
Interviewing

CSE 403

“… in my old age I treat Dilbert less as farce and more as
documentary.” – Patrick McKenzie

For and from you

• If you have interviewed: Think about what
you want to add.

• Others: You will do this soon, so pay
attention!

The Process

1. Recruiter/resume screen
2. Preliminary interview(s)

– Non-technical phone screen
– 1-2 technical phone interviews
– 1-2 technical on-campus interview
– 1-2 online programming challenges

3. On-site interview day(s)
– 2-7 in-person technical interviews

4. Follow-up technical phone/video interview(s)

Timeline: 3 weeks
to 3 months

Any other
processes?

Studying for Technical Questions

• Know the obvious topics
– Depth-first and bread-first traversals of DAGs
– Implementation/operations/traversals/running times for hash

tables, binary (search) trees, arrays, singly-linked lists, and heaps
– Quicksort, merge sort
– Non-traditional uses of hash tables
– Dynamic programming (example: shortest path)

• break into sub-problems, then combine the optimal solutions
to the sub-problems

– (These are not the most important software engineering skills,
but they show up on interviews anyway. Why?)

• Pick a language you know well
– Most companies let you pick any language (tip: try Python)
– Use language features that make things easy (e.g., list slices and

generators in Python)

Studying for Technical Questions

• DON’T learn the complex data structures
– Your interviewers haven’t written an AVL tree

since college, if ever

– Most questions feature traversals of
arrays/strings, singly-linked lists, grids
(two-dimensional arrays), and DAGs

• DON’T trust the recruiter to tell you about
questions and topics to expect
– Each interviewer selects their own questions

Studying for Technical Questions

• Learn the patterns in solutions. Examples?
– Dynamic programming on 2**n solutions

– Slow-pointer/fast-pointer traversal of linked lists

– Heaps are common

– Range constraints (last five minutes, ages) often
imply easy constant-space solutions

– To determine if two strings are anagrams, sort
their characters

Chat for a couple minutes with the
people around you!

Studying for Technical Questions

• Practice real questions
– Strongly prefer breadth of knowledge to depth

– Do the questions—don’t just read the answers

– Read interview books and websites
• Interviewers look here too

– Share with friends (but beware NDAs)

• Use paper or a whiteboard, not a computer

• Switch off with a friend being “interviewer”
and “interviewee”

Studying for Technical Questions

• Other DOs or DON’Ts for preparing?

Studying for Non-Technical Questions

• Practice nugget-first or STAR (situation, task, action,
result)
– How did you lower costs or increase profits?

• Focus on recent experience
• Behavioral questions: how you deal with conflict (with

people or among goals)
• Prepare for typical questions

– Tell me about a recent conflict with a teammate..
– Tell me about a time when you had to solve a complex

problem.

• Other non-technical questions:
– Tell me about a project you’re working on.
– Why do you want to work here?

This is your basic
job description,
so keep it in
mind.

The Night Before the Interview

• Study the company
– What do they build? What tools do they use? How do

they present themselves? Organization structure?
• Study the position
– Different companies assign different responsibilities to

roles with the same title.
• Plan your trip so you can be comfortably on-time
– Where is the building? How will you get there and

back? How long will it take to get there? Whom will
you ask for?

– Dress comfortably and slightly better than their
average employee.

• Sleep

In the Interview—Psychology

• You have to make the interviewer like you—be
charismatic.

• If you’re tense, it will show in your attitude
and your answers, so stay calm!
– Postpone important interviews until after you’ve

had practice with other companies

• Some interviewers pick a question they know
you can’t solve just to see how far you get and
how you handle the stress

• The meals are tests too

Tackling a Technical Question: Outline

1. Write the problem on the whiteboard. Ask
clarification questions.

2. Talk through an algorithm. No code yet!

3. Write the solution on the whiteboard. Ask
clarification questions.

4. Step through at least one non-trivial test
case. Fix bugs carefully and methodically.

Tackling a Technical Question

1. Write the problem on the whiteboard. Ask
clarification questions.
– If you’ve done this exact problem, say so. Be

prepared to describe the solution.

– Guarantees that you understand the question.

– Questions: What about symbolic links in file
systems? Does this maze have an exit?
• Others?

Tackling a Technical Question

2. Talk through an algorithm. No code yet!
– Always mention obvious-but-inefficient solutions.

They’re great fallbacks, and show that you can
solve the problem.

– You’re never totally stuck. You can always solve at
least part of the problem, so focus on that!

No matter what, stay positive. Laugh about your
confusion!

Tackling a Technical Question

3. Write code at a moderate pace (it will feel
slow).
– It’s okay to forget some syntax or an API—just

say so.
– Use good decomposition: “Gee, I wish I had a

function that …”. (Don’t implement helpers yet,
and only if the interviewer wants you to!)

It’s worth saying again: No matter what, stay
positive. Laugh it off!

Tackling a Technical Question

4. Step through at least one non-trivial test
case. Fix bugs carefully and methodically.
– Don’t be careless—make sure to completely

understand the source of the problem before
trying to fix it.

I said this already, but no matter what, stay positive.
Laugh off the mistakes!

Tackling a Technical Question

• What has worked for you in interviews?

Your turn to ask questions

• You are evaluated on the questions you ask

• Demonstrate your insight and passion
– How do you overcome problem X given your

problem Y (scale, distributed systems, tools,
deployment, etc.)?

– I’m interested in learning X. Did you come to this
company with a background in X already, or are
there opportunities to learn it?

• Others?

Do you want to work there?

• Can you imagine getting along with your
interviewers?

• Questions to ask:
– Is there opportunity for advancement and

movement between projects?
– How much time do you spend in meetings per

week? Coding per day?
– What is the ratio of developers to testers to

product managers?
– Do junior developers do design?

• Others?

After the Interview

• Relax—there’s no point worrying and you
cannot accurately judge your performance.

• If you haven’t heard anything in a week, you
can send a polite email.

• You can ask them to hurry up or give you more
time, to align with other companies’
schedules. Be polite!

Did you get the job?

• You got the job
– Negotiate. It’s expected! Remember—a lot of

money to you is peanuts to them.

– Asymmetric information

• Or you didn’t
– Don’t take it personally.

– Companies encourage you to “try, try, try again”.

Bibliography and Other Resources

• Cracking the Coding Interview (Gayle Laakmann)
• Programming Interviews Exposed (Mongan, Giguere,

and Kindler)
• Elements of Programming Interviews (Aziz, Prakash,

and Lee)
• “Don’t Call Yourself a Programmer”. Blog post. Patrick

McKenzie (Kalzumeus Software).
• “How to Get a Job at Google”. Thomas L. Friedman

(New York Times).
• “UW CSE Recruiting Policy for Employers”. UW CSE.

