
CSE 403 Software
Engineering
Build systems &
Continuous Integration and Deployment

Today’s outline

•Build systems

•Continuous integration and deployment systems

• What are these
• How do they relate
• Best practices
• Ideas to explore for your projects

2

3

The code is written … now what?

● Get the source code
● Install dependencies
● Run static analysis
● Compile the code
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!
● Operate, monitor, repeat

What does a developer do?

4

The code is written … now what?

● Get the source code
● Install dependencies
● Run static analysis
● Compile the code
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!
● Operate, monitor, repeat

What does a developer do?

Which of these tasks should
be handled manually?

5

The code is written … now what?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship
● Operate, monitor, repeat

What does a developer do?

Which of these tasks should
be handled manually?

NONE!

Instead, orchestrate with a tool

• Build system: a tool for automating compilation and other tasks

• Is a component of a continuous integration/deployment system

6

✔Get the source code
✔Install dependencies
✔Run static analysis
✔Compile the code
✔Generate documentation
✔Run tests
✔Create artifacts for customers
✔Ship!
✔Operate, Monitor, Repeat

Instead, orchestrate with a tool

• Build system: a tool for automating compilation and other tasks

• Is a component of a continuous integration/deployment system

7

✔Get the source code
✔Install dependencies
✔Run static analysis
✔Compile the code
✔Generate documentation
✔Run tests
✔Create artifacts for customers
✔Ship!
✔Operate, Monitor, Repeat

All tasks!

Build systems: tasks

Tasks are code!

● Should be tested
● Should be code-reviewed
● Should be checked into version control

8

Adding to our SE best practices list

• Automate, automate, automate everything!

• Always use a build tool (one-step build) ☺
• Use a CI tool to build and test your code on every

commit

• Don’t depend on anything that’s not in the build file

• Don’t break the build!

9

So how can a build system help us?

1. Dependency management
1. Identifies dependencies between files (including externals)
2. Runs the compiles in the right order
3. Only runs the compiles needed due to dependency changes

2. Efficiency and reliability
1. Automates the build process, for any team member in any environment
2. Formalizes the build process (no tribal knowledge)
3. Eliminates the chance of errors
4. Speeds up the process

10

Roles of a build system

A build system:
● defines tasks (and external resources, such as libraries)
● defines dependencies among tasks (a graph)
● executes the tasks

11

Simple example code for dependency mgmt

12

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

13

compile
Main

compile
Lib

run
lib
test

run
system
test

Build systems: dependencies between tasks

What are the
dependencies
between these

tasks?
And why do I care?

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

14

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

15

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

16

compile
Main

compile
Lib

run lib
test

run
system
test

In what order
should we run
these tasks?

Build systems: dependencies between tasks

17

Large projects have thousands of tasks
• Dependencies between tasks form a directed acyclic graph
• Use a topological sort to create an order for tasks

• See Appendix for example

External code (libraries) also can be complex
• List all dependencies for reproducibility

• A hermetic build is “insensitive to the libraries and other software installed

on the build machine”¹
• Build systems can manage external dependencies as well!
• And/or use a dependency manager

¹https://landing.google.com/sre/sre-book/chapters/release-engineering/

Build systems determine task order

https://landing.google.com/sre/sre-book/chapters/release-engineering/

18

Dependency manager
Unix: apt, yum
Java: Maven Central
JavaScript: NPM
Python: PIP
Ruby: RubyGems

19

Roles of a build system

A build system:
● defines tasks
● defines dependencies among tasks (a graph)
● executes the tasks

20

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

kind of rule

21

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

explicitly specified
dependencies

22

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

code!
(usually, following
conventions is enough)

23

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

24

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

kind of rule

25

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies

26

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies
(also bazel tasks)

27

How to speed up a build
● Incrementalize - only rebuild what you have to

○ Compute hash codes for inputs to each task

■ Watch out: there are more inputs than you think

○ Before executing a task, check input hashes

○ If they have not changed since the last time the task was executed, skip it!

● Execute many tasks in parallel

● Cache artifacts (in the cloud)

Static analysis

28

Can run before or after the compile step

Examples:
• Credential scan
• Date scan
• Sensitive data scan What might be

others?

Is this
worthwhile?

Build systems: opportunity for static
analysis

29

Could these types of static analysis
tools be run earlier than CI?

There are a lot of build systems

31

make

ant
maven
gradle
rake
SCons
sbt

blaze
buck

A build system:
● defines tasks
● defines dependencies

among tasks (a graph)
● executes the tasks

Build system code may run at
graph construction time or at
task execution time

Assignment: evaluate and select a build system

32

Java+

gradle Open-source successor to ant and maven

bazel Open-source version of Google’s internal build tool (blaze)

Python

hatch Implements standards from the Python standard (uses TOML

files, has PIP integration)

poetry Packaging and dependence manager

tox Automate and standardize testing

JavaScript

npm Standard package/task manager for Node, "Largest software

registry in the world."

webpack Module bundler for modern JavaScript applications

gulp Tries to improve dependency and packing

Many
other

options!

Over to
you to

research

Today’s outline

•Build systems

•Continuous integration and deployment systems

• What are these and
• How do they relate
• Best practices
• Ideas to explore for your projects

33

We are here

34

CI/CD: What’s the difference?

Continuous Integration (CI)
• Devs regularly integrate code into a shared repository
• System builds/tests automatically with each update
• Complements local developer workflows (e.g., may run diff tests)
• Goal: to find/address bugs quicker, improve quality, reduce time to get

to working code

Continuous Deployment (CD) [Continuous Delivery]
• Builds on top of CI
• Automatically pushes changes [to staging environment and then] to

production
• Goal: always have a deployment-ready build that has passed through a

standardized testing process

https://aws.amazon.com/devops/what-is-devops/

https://aws.amazon.com/devops/what-is-devops/

35

Just like build, there are many CI tool options

Assignment: Research, evaluate
and choose a CI system

36

Continuous integration basics

• A CI workflow is triggered when an event occurs in your [shared] repo
• Example events

• Push
• Pull request
• Issue creation

• A workflow contains jobs that run in a defined order
• A job is like a shell-script and can have multiple steps
• Jobs run in their own vm/container called a runner
• Example jobs

• Run static analysis
• Build, test
• Deploy to test, deploy to prod

Using GitHub CI
terminology but
concepts span

other CI systems

https://docs.github.com/en/actions

https://docs.github.com/en/actions

Nice light starter tutorial

Automation Step by Step:
https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

39

https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

40

Example: CI at work at UW

Lab In The Wild
is a research
project drawing
survey input
from diverse
community

Nigini Oliveira
(researcher and
403 prof)
provided this
example

https://www.labinthewild.org/

41

Example: CI with Github actions

42

Example: CI with Github actions

Code reuse with
established “actions”

Trigger

Workflow name

Linux OS environment

One command to run test suite

Unit tests are triggered
on every push of new

code

Continuous delivery/deployment basics

43What is Continuous Delivery? – Amazon Web Services

Staging before Production is very
typical of industry practices

Why would you not always
automatically deploy?

https://aws.amazon.com/devops/continuous-delivery/

Build & CI - Remember these best practices

• Automate everything!

• Always use a build tool (one-step
build)

• Use CI to build and test your code on
every commit

• Don’t depend on anything that’s not in
the build file (hermetic)

• Don’t break the build!

47

Appendix - Topological sort example

• Build tools use a topological sort to create an order to compiles
• Order nodes such that all dependencies are satisfied
• Implemented by computing indegree (number of incoming edges) for each node
• No dependencies go first and open door to the others

48

49

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: topological sort

What’s the indegree of each node?

50

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Build systems: topological sort

51

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Build systems: topological sort

52

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Build systems: topological sort

53

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

54

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

55

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Which is preferable?

Build systems: topological sort

