CSE 403 Software
Engineering

Build systems &
Continuous Integration and Deployment



Today’s outline

*Build systems
* Continuous integration and deployment systems

* What are these

* How do they relate

* Best practices

* Ideas to explore for your projects



What does a developer do?

The code is written ... now what?

Get the source code

Install dependencies

Run static analysis

Compile the code

Generate documentation

Run tests

Create artifacts for customers
Ship!

Operate, monitor, repeat



What does a developer do?

The code is written ... now what?

Get the source code

Install dependencies ,
Run statifanmysis Which of these tasks should

Compile the code be handled manually?
Generate documentation

Run tests

Create artifacts for customers
Ship!

Operate, monitor, repeat



What does a developer do?

The code is written ... now what?

Which of these tasks should
be handled manually?

NONE!




Instead, orchestrate with a tool

* Build system: a tool for automating compilation and other tasks

* Is a component of a continuous integration/deployment system

v/ Get the source code

v/Install dependencies

¢/ Run static analysis

¢/ Compile the code

v/ Generate documentation

¢/ Run tests

v/ Create artifacts for customers
v/ Ship!

v/ Operate, Monitor, Repeat




Instead, orchestrate with a tool

* Build system: a tool for automating compilation and other tasks

* Is a component of a continuous integration/deployment system

v/ Get the source code

v/Install dependencies

¢/ Run static analysis

¢/ Compile the code

v/ Generate documentation

¢/ Run tests

v/ Create artifacts for customers

v/ Ship!

v/ Operate, Monitor, Repeat
All tasks!




Build systems: tasks

Tasks are codel!

e S
e S
e S

NOou
NOou

NOou

O
O

o

be tested
be code-reviewed

be checked into version control



Adding to our SE best practices list

- Automate, automate, automate everything!
- Always use a build tool (one-step build) &

- Use a Cl tool to build and test your code on every
commit

- Don't depend on anything that’s not in the build file
- Don't break the build!




So how can a build system help us?

1. Dependency management
1. Identifies dependencies between files (including externals)

2. Runs the compiles in the right order
3. Only runs the compiles needed due to dependency changes

2. Efficiency and reliability

1. Automates the build process, for any team member in any environment
2. Formalizes the build process (no tribal knowledge)

3. Eliminates the chance of errors

4. Speeds up the process

10



Roles of a build system

A build system:
e defines tasks (and external resources, such as libraries)
e defines dependencies among tasks (a graph)
e executes the tasks

11



Simple example code for dependency mgmt

% ls src/
Lib.java
LibTest. java
Main.java
SystemTest. java

12



Build systems: dependencies between tasks

compile
Lib
% 1s src/ i What are the
Lib.java dependencies
between these

LibTest.java
Main.java tasks?

SystemTest.java And why do | care?
compile
Main

13




Build systems: dependencies between tasks

compile
Lib

compile
Main

14



Build systems: dependencies between tasks

compile
Lib

compile
Main

15



Build systems: dependencies between tasks

compile
Lib

In what order
should we run
these tasks?

compile
Main

16



Build systems determine task order

Large projects have thousands of tasks
* Dependencies between tasks form a directed acyclic graph

* Use a topological sort to create an order for tasks
* See Appendix for example

External code (libraries) also can be complex
- List all dependencies for reproducibility

* A hermetic build is “insensitive to the libraries and other software installed
on the build machine™

* Build systems can manage external dependencies as well!
* And/or use a dependency manager

1h’ctDs://Iandin,fz.,czoogle.com/sre/sre—book/chaDters/release—en;zineerin;z/

17


https://landing.google.com/sre/sre-book/chapters/release-engineering/

Dependency manager

Unix: apt, yum
Java: Maven Central
JavaScript: NPM
Python: PIP

Ruby: RubyGems

18



Roles of a build system

A build system:
e defines tasks
e defines dependencies among tasks (a graph)
e executes the tasks

19



Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group:
description 'Formatwghe Java source code’
// jdk8 and checker-qua ave no source, so skip
onlyIf { !project.name.is("’
executable 'python’

doFirst {
args += "${formatScriptsHome}/run-goople-java-format.py"
args += "--aosp" // 4 space indentation

args += getJavaFilesToFormat(project.name) kind of rule

'Format') {

8') & & !project.name.is('checker-qual') }

20



Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {

description 'Format the Java source \code'
// Jjdk8 and checker-qual have no soursg, so skip

onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
executable 'python’

doFirst {

args += "${formatScriptsHome}/run-google-yava-format.py"

args += "--aosp"” // 4 space indentation

args += getJavaFilesToFormat(project.name) explicitly specified
} dependencies

21



Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
description 'Format the Java source code’
// Jjdk8 and checker-qual have no source, so skip
onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
executable 'python’

doFirst {
args += "${formatScriptsHome}/run-google-java-format.py"
args += "--aosp"” // 4 space indentation de!
: : code.
args += getJavaFilesToFormat(project.name) .
) (usually, following

} conventions is enough)

22



Example task: bazel

java_binary(

hame = "dux",

main_class = "org.dux.cli.DuxCLI",

deps = ["@google_options//:compile”,
"@checker qual//:compile”,
"@google_cloud_storage//:compile”,
"@sl1f4j//:compile”,
"@logback_classic//:compile”],

srcs = glob(["src/org/dux/cli/*.java",

"src/org/dux/backingstore/*.java"),

23



Example task: bazel

java_binary kind of rule
name = "dux",

main_class = "org.dux.cli.DuxCLI",

deps = ["@google_options//:compile”,
"@checker qual//:compile”,
"@google_cloud_storage//:compile”,
"@slf4j//:compile”,
"@logback_classic//:compile”],

srcs = glob(["src/org/dux/cli/*.java",

"src/org/dux/backingstore/*.java"),

24



Example task: bazel

java_binary( — explicitly specified
name = "dux", dependencies
main_cdass = "org.dux.cli.DuxCLI",
deps = ["@google options//:compile”,
"@checker qual//:compile”,
"@google cloud storage//:compile”,
"@slf4j//:compile”,
"@logback classic//:compile”],
srcs = glob(["src/org/dux/cli/*.java",
"src/org/dux/backingstore/*.java"),




Example task: bazel

java_binary( — explicitly specified
name = "dux", dependencies
main_cédass = "org.dux.cli.DuxCLI", (also bazeltasks)
deps = ["@google options//:compile”,
"@checker _qual//:compile"”,
"@google cloud_storage//:compile”,
"@slf4j//:compile”,
"@logback classic//:compile”],
srcs = glob(["src/org/dux/cli/*.java",
"src/org/dux/backingstore/*.java"),




How to speed up a builo

e Incrementalize - only rebuild what you have to
o Compute hash codes for inputs to each task
m Watchout: there are more inputs than you think
o Before executing a task, check input hashes
o If they have not changed since the last time the task was executed, skip it!
e Execute many tasks in parallel
e Cache artifacts (in the cloud)

27



Static analysis

Can run before or after the compile step

Examples:
* Credential scan
* Date scan
* Sensitive data scan

What might be
others?

Is this
worthwhile?

28



Build systems: opportunity for static

< > C @ github.com/Yelp/detect-secrets

‘= README.md

detect-secrets-ci failing § pypi package '1.4.0 § homebrew 1.4.0
Donate 'Chanty

detect-secrets ¢

About @

detect-secrets is an aptly named module for (surprise, surprise) detecting
secrets within a code base.

However, unlike other similar packages that solely focus on finding secrets, this
package is designed with the enterprise client in mind: providing a backwards
compatible, systematic means of:

1. Preventing new secrets from entering the code base,
2. Detecting if such preventions are explicitly bypassed, and

3. Providing a checklist of secrets to roll, and migrate off to a more secure
storage.

Could these types of static analysis

tools be run earlier than CI?

¢« > C

& bearer

Scan your source code against top security and privacy risks.

& github.com/bearer/bearer

Bearer CLI is a static application security testing (SAST) tool that scans your source
code and analyzes your data flows to discover, filter and prioritize security and
privacy risks.

29



There are a /ot of build systems

make

ant
maven
gradle
rake
SCons
sbt

blaze
buck

A build system:
e defines tasks
e defines dependencies
among tasks (a graph)
e executes the tasks

Build system code may run at

graph construction time or at
task execution time

31



Assignment: evaluate and select a build system

Many
other
options!

Over to
you to
research

Java+
gradle Open-source successor to ant and maven
bazel Open-source version of Google’s internal build tool (blaze)
Python
hatch Implements standards from the Python standard (uses TOML
files, has PIP integration)
poetry Packaging and dependence manager
tox Automate and standardize testing
JavaScript
npm Standard package/task manager for Node, "Largest software
registry in the world."
webpack Module bundler for modern JavaScript applications

gulp

Tries to improve dependency and packing

32




Today’s outline

* Build systems
* Continuous integration and deployment systems <— We are here

* What are these and

* How do they relate

* Best practices

* Ideas to explore for your projects

33



Cl/CD: What's the difference?

Continuous Integration (Cl)
* Devs regularly integrate code into a shared repository
* System builds/tests automatically with each update
* Complements local developer workflows (e.g., may run diff tests)
* Goal: to find/address bugs quicker, improve quality, reduce time to get
to working code

Continuous Deployment (CD) [Continuous Delivery]
* Builds on top of ClI ‘/’

* Automatically pushes changes [to staging environment and then] to
production

* Goal: always have a deployment-ready build that has passed through a
standardized testing process

https://aws.amazon.com/devops/what-is-devops/



https://aws.amazon.com/devops/what-is-devops/

Just like build, there are many ClI tool options

.

GitHub Actions WS Azure Pipelines

e u Bitbucket Pipelines
GltLab cCirciecCl

Travis ClI Assignment: Research, evaluate

and choose a Cl system



Continuous integration basics

* A Cl workflow is triggered when an event occurs in your [shared] repo
* Example events
* Push
* Pull request
* Issue creation

* A workflow contains jobs that run in a defined order
* Ajob is like a shell-script and can have multiple steps
* Jobs run in their own vm/container called a runner
* Example jobs
* Run static analysis

Using GitHub CI
terminology but
concepts span
e Build, test other Cl systems

* Deploy to test, deploy to prod

https://docs.github.com/en/actions

36


https://docs.github.com/en/actions

Nice light starter tutorial

Automation Step by Step:
https://www.youtube.com/watch?app=desktop&v=ylEy4elLdhFs

39


https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

Example: Cl at work at UW

&< O () https://www.labinthewild.org o 38 A o = xR 0
. Our Experiments Findings & Data Sets Blog For Researchers About Us English ~
Lab In The Wild
is a research 1,137
project drawing LAB INTH EWlLD s B i
. month
survey Input
from diverse
community 8 g
Nigini Oliveira
h d What is your decision-making style? What's your personality? Can you tell the nutritional content of
(researcher an 2 plate?
4 O 3 r Of ) You are making decisions every day. Have you You will learn about the five main traits of your Take this study to see if you can accurately tell
p wondered what kind of decision-making styles personality and how you score on them. We the nutritional content of a plate. See if you are
. . you have? Take our test and you will learn will also try to establish the relationship more accurate than the average! An Al
p rovi d e d th IS more about it! between personality and physical activity assistant will help you along the way.

goals.

Participate now! Participate now! Participate now!

C I

example



https://www.labinthewild.org/

Example: Cl with Github actions

0 Search or jump to... Pull requests Issues Codespaces Marketplace Explore

& labinthewild / LITW-API  Private 4% EditPins v @Unwatch 2 ~

<> Code () Issues 3 i1 Pullrequests 1 ® Actions Projects 1 @ Security [~ Insights 3 Settings

€« CI - UnitTesting
@ ClI Tests run only on push for now. PL + Push was duplicating runs. #15

l () Summary

Triggered via push 1 minute ago Status Total duration Artil
Jobs & nigini pushed -o- Oeaf405 ci_tests Success 1m 26s -
@ test (3.11,6.0)
Run details CI-teSt'ymI

on: push
(% Usage

Matrix: test

59 Workflow file

@ 1 job completed
Show all jobs




Unit tests are triggered

on every push of new

Example: Cl with Github actions code

jobs:

test:
runs-on: ubuntu-latest
strategy: <2 keys>

steps:

uses:
name:
uses:
with:
name:
uses:
with:
name:

run:

name:

run:

name:

run:

name: CI - UnitTesting
on: [push]

actions/checkout@v3

Set up Python ${{ matrix.python-version }}
actions/setup-python@v3

<1 key>

Set up MongoDB ${{ matrix.mongodb-version }}
supercharge/mongodb-github-action@l.8.0

<1 key>

Install dependencies

python3 -..tall hatch

Pre-fly setup
cp $GITHU..GITHUB_ENV

Test with hatch

l

hatch run test:test

A A

Workflow name

Trigger

Linux OS environment

Code reuse with
established “actions”

One command to run test suite

42



Continuous delivery/deployment basics

Why would you not always
automatically deploy?

v

CONTINUOUS INTEGRATION

oy |8V
CONTINUOUS DELIVERY '
o (8
CONTINUOUS DEPLOYMENT

@ © AUTOMATED > @ © AUTOMATED > @ > @

Source CONTROL BuiLp STAGING ProDuUCTION
COMMIT CHANGES RUN BUILD AND UNIT TESTS DEPLOY TO TEST ENVIRONMENT DEPLOY TO PRODUCTION
RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS ENVIRONMENT

Staging before Production is very
typical of industry practices

What is Continuous Delivery? — Amazon Web Services 43


https://aws.amazon.com/devops/continuous-delivery/

Build & Cl - Remember these best practices

« Automate everything!

» Always use a build tool (one-step

build)

« Use Cl to build and test your code on
every commit

* Don't depend on anything that’s not in
the build file (hermetic)

» Don'’t break the build!

47



Appendix - Topological sort example

* Build tools use a topological sort to create an order to compiles

* Order nodes such that all dependencies are satisfied
* Implemented by computing indegree (humber of incoming edges) for each node
* No dependencies go first and open door to the others

48



Build systems: topological sort

compile
Lib

compile
Main

What’s the indegree of each node?

49



Build systems: topological sort

compile
Lib

compile
Main




Build systems: topological sort

compile
Lib

compile
Main

51



Build systems: topological sort

(%) (%)
compile
Lib
1
(%)
compile
Main

52



Build systems: topological sort

(%)
compile
Lib
(%)
compile
Main

e.
(%)

53



Build systems: topological sort

(%)
compile
Lib
(%)
compile
Main

e.
(%)

54



Build systems: topological sort

Valid sorts:

compile
Lib

1. compile Lib, runlib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test
compile
Which is preferable? Main




