
Architecture and Design
CSE 403 Software Engineering

Today’s Outline

Architecture
1. What is architecture
2. How does it differ from design
3. What are some common architectures used in software

2

What does “Architecture” make you think of?

Paul G. Allen Center by LMN Architects MIT Stata Center by Frank Gehry

In contrast, what comes to mind for “Design”?

Where do architecture and design fit in?

6

Requirements

Architecture

Design

Source code

D
evelo

p
m

ent p
ro

cess

Le
ve

l o
f

ab
st

ra
ct

io
n

Definitions

7

Architecture (what components are needed)
• High-level view of the overall system:

• What components do exist?
• What are the connections and/or protocols between components?

Design (how the components are developed)
• Considers one component at a time

• Data representation
• Interfaces, class hierarchy

The level of abstraction is key

With both architecture and design, we’re building an

abstract representation of reality

• Ignoring (insignificant details)
• Focusing on the most important properties
• Considering modularity (separation of concerns) and interconnections

8

Case study – Linux kernel

9

Source code

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?

Case study – Linux kernel

10

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?
• Are there dependencies?

Call graph

Case study – Linux kernel

11

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?
• Are there dependencies?
• What are the different components?

Layer diagram

What does an architecture look like?

Box-and-arrow diagrams

Very common and hugely valuable.
But, what does a box represent?

an arrow?
a layer?
adjacent boxes?

Box and arrow diagrams redux

An architecture: components and connectors

• Components define the basic computations comprising the system
and their behaviors
• abstract data types, filters, etc.

• Connectors define the interconnections between components
• procedure call, event announcement,

asynchronous message sends, etc.

• They may sometimes share behavior
• Ex: A connector might (de)serialize data, but can it perform other, richer

computations?

UML diagrams

• UML = universal modeling language
• A standardized way to describe (draw) architecture

• Also implementation details such as subclassing, uses (dependences), and much more

• Widely used in industry
• Not the topic of this lecture

• Critical advice about syntax:
• Use consistent notation: one notation per kind of component or connector

Examples of software architectures

17

SW Architecture #1 – Pipe and filter

18

It doesn’t specify the design or implementation details of
the individual components (the filters)

The pipe-and-filter architecture talks about the
main components and the way they connect

Filter computes on
the data

Pipe passes the data

SW Architecture #1 – let’s try it out

How would you attack this problem?

Count the CSE 403 letter grades

19

???

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

SW Architecture #1 – Pipe and filter

You might start by thinking of components and successive filtering (architecture)

20

Process1() -> Process2() -> Processn()

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

SW Architecture #1 – Pipe and filter

You might then consider the components’ inputs and outputs (design)

21

Grab() -> Select() -> Order() -> Count()

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

B,CSE403,Joe

A,CSE403,Jane

A,CSE403,Lin

B

A

A

A

A

B

2 A

1 B

SW Architecture #1 – Pipe and filter

Finally, you get to code

22

grep CSE403 grades.csv | cut -f1 -d ‘,’ |
sort | uniq -c

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

B,CSE403,Joe

A,CSE403,Jane

A,CSE403,Lin

B

A

A

A

A

B

2 A

1 B

An architectural style imposes constraints

• Pipes & filters
• Pipes must compute local transformations
• Filters must not share state with other filters
• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell this from a picture
• One can formalize these constraints

scan parse optimize generate

SW Architecture #2 – Layered (n-tier)

24

Layer 1

Layer 2

 Layer 3.1 Layer 3.2
• Layers use services

provided (only) by the
layers directly below them

• Layers of isolation – limits
dependencies

• Good modularity and
separation of concerns

SW Architecture #2 – Layered

25

Linux Architecture
Enterprise System Architecture

Pros / cons?

SW Architecture #2 – Layered

26

Allocator PBS
mom

Job
Launch

Compil
er

PerfTo
ol

TotalVi
ew

Login
Node

Showmesh

LinuxLibraries

User Space

Boot

Portals

Portals
Driver IP

Portals Driver Support RCA

RCA

RCA
daemon

Parallel File
Systems

Support Services
& daemons

C
om

m
on

Operating
System

3rd Party CustomCustom Open
Source

3rd Party
 Integration

User’s
Environment

Accounti
ng

DBPBS
srv

Server
Node

Dedicated Server
Functions

IO & FS
daemons

IO
Node

IO &
Network
Nodes
only

FC
Driver

10GigE
Driver

Dedicated Network & External
RAID IO S

pecialized
by N

ode
Function

Runs on all
Service and IO

Nodes

Low Level
Network

code

Message
passing

code

Applicationc
ode

SW Architecture #3 – Client Server

27

Client

Server

Clients can be software that depends on a
shared database/service

What might
be a con of

this and how
might it be
avoided?

SW Architecture combinations!

28

Client-Server may be too high a level of abstraction for your purpose
Consider combining with other patterns (e.g., layered)

Presentation layer

Business logic layer

Data access layer DB

Client YClient X

SW Architecture combinations^2

29

How detailed
should an
architecture
description be?

Presentation layer

Business logic layer

Client Y

Data access layer

Client X

DB cDB a DB b

SW Architecture #4 – Model View
Controller (MVC)

30

View Controller

Model

Client
sees uses

manipulatesupdates

Separates
• data representation (Model)
• visualization (View)
• client interaction (Controller)

SW Architecture #4 – MVC Example

31

54 F

12.2 C
Max: 60 F
Min: 52 F

Current 30 day history

Reset

09/09, 8am, 50
09/09, 4pm, 51
09/10, 8am, 52
09/10, 4pm, 54

…

SW Architecture #4 – MVC Example

32

54 F

12.2 C
Max: 60 F
Min: 52 F

Current 30 day history

Reset

09/09, 8am, 50
09/09, 4pm, 51
09/10, 8am, 52
09/10, 4pm, 54

…

SW Architecture – many variants of MVC

33

Consider the connections (* == many)

Blackboard architectures
• The knowledge sources: separate, independent units

of application dependent knowledge. No direct
interaction among knowledge sources

• The blackboard data structure: problem-solving state
data. Knowledge sources make changes to the
blackboard that lead incrementally to a solution to the
problem.

• Control: driven entirely by state of blackboard.
Knowledge sources respond opportunistically to
changes in the blackboard.

34

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern
recognition.

Hearsay-II: blackboard

35

As an architect (and designer), consider …

36

Level of Abstraction

• Components (modules) and their interconnections (apis)

Separation of concerns

• Strong cohesion – tight relationships within a component (module)

• Loose coupling – interconnections between components (module)

Modularity

• Decomposable designs

• Composable components

• Localized changes (due to requirement changes)

• Span of impact (how far can an error spread)

37

Properties of a good architecture

• Satisfies functional and performance requirements

• Manages complexity

• Accommodates future change

• Is concerned with
• reliability, safety, understandability, compatibility, robustness, …

Divide and conquer
• Benefits of decomposition:

• Decrease size of tasks
• Support independent testing and analysis
• Separate work assignments
• Ease understanding

• Use of abstraction leads to modularity
• Implementation techniques: information hiding, interfaces

• To achieve modularity, you need:
• Strong cohesion within a component
• Loose coupling between components
• And these properties should be true at each level

An architecture helps with

System understanding: interactions between modules
Reuse: high-level view shows opportunity for reuse
Construction: breaks development down into work items; provides a path from
requirements to code
Evolution: high-level view shows evolution path
Management: helps understand work items and track progress
Communication: provides vocabulary; a picture says 1000 words

Qualities of modular software
• decomposable

• can be broken down into pieces

• composable
• pieces are useful and can be combined

• understandable
• one piece can be examined in isolation

• has continuity
• change in reqs affects few modules

• protected / safe
• an error affects few other modules

Summary

• An architecture provides a high-level framework
to build and evolve a software system.

• Strive for modularity: strong cohesion and loose
coupling.

• Consider using existing
architectural styles
or patterns.

43

Bonus slides

44

Properties of architecture

• Coupling

• Cohesion

• Style conformity

• Matching

Coupling (loose vs. tight)
• Coupling: the kind and quantity of interconnections among modules

• Modules that are loosely coupled (or uncoupled) are better than those
that are tightly coupled

• The more tightly coupled two modules are, the harder it is to work with
them separately

Tightly or loosely coupled?

Tightly or loosely coupled?

Cohesion (strong vs. weak)

• Cohesion: how closely the operations in a module are related

• Tight relationships improve clarity and understanding

• A class with good abstraction usually has strong internal cohension

• No schizophrenic classes!

Strong or weak cohesion?
class Employee {

public:
 …
 FullName GetName() const;
 Address GetAddress() const;
 PhoneNumber GetWorkPhone() const;
 …
 bool IsJobClassificationValid(JobClassification jobClass);
 bool IsZipCodeValid (Address address);
 bool IsPhoneNumberValid (PhoneNumber phoneNumber);
 …
 SqlQuery GetQueryToCreateNewEmployee() const;
 SqlQuery GetQueryToModifyEmployee() const;
 SqlQuery GetQueryToRetrieveEmployee() const;
 …
}

Style conformity: What is a style?

• An architectural style defines
• The vocabulary of components and connectors for a family (style)

• Constraints on the elements and their combination
• Topological constraints (no cycles, register/announce relationships, etc.)

• Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties of that style (for any architecture
in that style)
• For example: performance, lack of deadlock, ease of making particular classes of changes, etc.

An architectural style imposes constraints

• Pipes & filters
• Pipes must compute local transformations
• Filters must not share state with other filters
• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell this from a picture
• One can formalize these constraints

scan parse optimize generate

The design and the reality

• The code is often less clean than the design

• The design is still useful
• communication among team members
• selected deviations can be explained more concisely and with clearer reasoning

Architectural mismatch

• Some components are inherently incompatible
• Assumptions about memory allocation, vs. custom allocator

• Use of two frameworks (assumes it is main)

• Library wants to operate first or last

• Data formats

• Assumed infrastructure

