CSE 403

Software Engineering

Version control and Git

Why use version control

Why use version control

Essay FINAL

11:57pm

Why use version control —

Essay Essay FINAL

11:51pm 11:57pm

backup/restore

Essay FINAL Essay FINAL

11:58pm 11:59pm

Why use version control — teamwork

:

m— \
—

EEE

EEE

Common App Common App Common App Common App Common App Common App Common App Common App
Essay Essay EDITED Essay FINAL Essay FINAL Essay FINAL Essay OKAY THIS Essay REVISED Essay REVISED
FINAL FINAL REVISED IS THE FINAL FINAL
ONE

How are you going to make sense of this?

Why use version control?

Common App
Essay

11:51pm

File Edit View Insert
0 New

£ Open

-] Import slides

D Make a copy
[Save as Google Slides

&+ Share
& Email

&4, Download

2. Rename
5 Move
(&, Add shortcut to Drive

T Move to trash

£9 Version history

® Make available offline

(@ Details

@ Language

[Page setup

[Q Print preview

& Print

Slide Arrange Tools Poll Everywhere Help Acces:

R B 9 N\~ Background
%0

Name current version

See version history 3€+Option+Shift+H

®P

Version history

All versions

Tuesday

» January 9, 11:52AM

Current version
@ Jason Hoffman

December 2023

» December 5, 2023, 2:54PM

® Jason Hoffman

November 2023

» November 21, 2023, 11:10AM

@ Jason Hoffman

» November 15, 2023, 3:22PM

® Jason Hoffman

» November 15, 2023, 2:36 PM

@ Jason Hoffman

» November 3, 2023, 4:13PM

® Jason Hoffman

October 2023

» October 24, 2023, 11:42AM

@ Jason Hoffman

» October 17, 2023, 12:19PM

® Jason Hoffman

July 2023

July 24, 2023, 3:18 PM

@ Jason Hoffman

» July 24, 2023, 2:43PM

@ Jason Hoffman

Goals of a version control system

Version control records changes to a set of files over time.

This enables you to:

o Keep a history of your work
m Summary commit title
m See which lines were co-changed

o Checkpoint specific versions (known good state)
m Recover specific state

o Binary search over revisions
m Find the one that introduced a defect

o Undo arbitrary changes
m Without affecting prior or subsequent changes

o Maintain multiple releases of your product

Who uses version control?

Everyone should use version control
e Large teams (100+ developers)
e Small teams (2-10+ developers, like this course!)

e Yourself (and your future self)
o Multiple features or multiple computers

Example application domains

e Software development

e Research (infrastructure and data)

e Documents (See: “Version History” in Google Docs)

Version Control

Working by yourself

Reposﬂory
(database of
_ edits/versions) /

7

Workmg copy |

. (make edits here))
N

Centralized version control (the old way)

e One central repository.

e All users commit their changes
to a central repository.

e Each user has a working copy.
As soon as they commit, the
repository gets updated.

e Examples: SVN (Subversion), CVS.

Centralized version control

Server

Repository

&
N = 2,
((\((\\ x< £ 8 %f)
(,0 63 E 9—’1— 0)/})
g %

Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control (the new way)

e Multiple copies of a repository.

e Each user commits to a local
(private) repository.

e All committed changes remain local
unless pushed to another repository.

e No external changes are visible

unless pulled from another repository.

e Examples: Git, Hg (Mercurial).

Distributed version control

Server

Repository
P HIE S
Q\)\\ 3| |= Py
Repository Repository Repository
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

2 different version control modes

Centralized version control

Working
copy

Workstation/PC #1

Server
Repository
c (/0
© (A
AN
(1] 0)/’
Working Working
copy copy

Workstation/PC #2 Workstation/PC #3

Distributed version control

Server
Repository
o £l 2 2
~ \)\\ a = Dl/s
Repository Repository Repository
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Branch
VS
Clone

Vs
Fork

Multiple versions of your program

What if you have to support:
Version 1.0.4 vs version 2.0.0
Windows vs macOS

Adding a feature

Fixing a bug

Git handles these!

® Branch: Start a parallel history of changes to the code in the repository

® Clone: Make a copy of the repository to work on code changes

e Fork: Make a copy the repository that will not necessarily be merged
back with original (but can be through a pull request)

Branches

- Git has a basic concept of a branch
o Branch: one history of changes to the code

- You can have many branches
o Lightweight - every work item (feature, bug) has its own branch

Feature
Branch

MAIN O O O O O
Branch

Commit point represents one
state of the program

Branches

- There is one main development branch (called “main”
P

- This is considered your latest working version of the code
o You should always be able to ship “working software” from main

MAIN O O O O O
Branch

Commit point represents one
state of the program

Branches

- You can have many branches
» Life goal of a branch is to be merged into main and deleted as
quickly as possible

- To develop a feature or bug fix, create a new branch
- And then later merge it with Main
« Why is this a good practice?

Merge point

Feature Branch software merged with
Main (done on GitHub)
Branch

\El)

o,

Branch

git checkout -b branch name

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps Main always working and allows for parallel
development
m It’s ok to have many branches

Feature
Branch

MAIN
Branch

Hot fix

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps Main always working and allows for parallel
development

Feature
Branch
WAL
Branch

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps Main always working and allows for
parallel*2 development

How to merge?

Feature
Branch2

Feature
Branchl

MAIN
Branch

I

Merging

Scenario where merging is possible

Feature

¢
O—O"O—?

(2 types: from main and into main)

https://www.atlassian.com/qit/tutorials/merging-vs-rebasing

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

Merging main into the feature branch

Y
o—®
o—o—ﬁg¢/

Main

git merge branch name

¥ Merge Commit

First merge: resolve conflicts before pushing to main

https://www.atlassian.com/qit/tutorials/merging-vs-rebasing

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes into main)

Merging the feature branch into main

Approve GitHub pull
request

Main

¥ Merge Commit

Second merge: pull request to get your changes into main

https://www.atlassian.com/qit/tutorials/merging-vs-rebasing

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge: Squash & merge on GitHub

Initial goal:

[N
O—0 0@

Merge Commit

Merge:

O0—(0O0e0 006

f

Merge commit

Squash and merge:

O—0 0@

f

Summary
merge commit

https://www.atlassian.com/qit/tutorials/merging-vs-rebasing

Create a merge commit
All commits from this branch will be added to

the base branch via a merge commit.

Squash and merge
The 14 commits from this branch will be

combined into one commit in the base branch.

Rebase and merge

The 14 commits from this branch will be

rebased and added to the base branch.

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge conflicts

Conflicts

dog!

Hello, Hello,
world! cat!
Merge conflict!
Hello,

e Conflicts arise when two users change the same line of a file
e When a conflict arises, the person doing the merge needs to
resolve it by manual inspection

How to avoid merge conflicts?

Merge Algorithm: May Fail to Make a Merge

1 def main():
. . 2 n =128
e Line-by-line merge 3 I
reports a problem X ialcode A
e Inspectionreveals @ def minO: et mafol):
2 = 128 2 n = 64
they can be merged : print) : print(n)
Change 1 R\ ’ Change 2
Still works despite e
2 changes : print()

Merged (unachievable by
line-based merge)

Merge Algorithm: Falsely Successful Merge

e Can merge cleanly (no
textual merge conflicts)

e Resulting code is
iIncorrect

Function name

def mult(a,b):
return axb

def main():
a=3
print(a)

’ Initial code \

S T N N

def (a,b): 1 def mult(a,b):
return axb 2 return axb
def main(): 5 def main():
a=3 4 a = mult(3,5)
print(a) 5 print(a)
Change 1 a x Change 2
def (a,b):

2 return axb
5 def main():

changed

— a = mult(3,5)

print(a)

Merged (incorrectly)

How to avoid merge conflicts

Synchronize with teammates often

® Pull often

O Avoid getting behind the main branch

® Push as often as practical

O Don’t destabilize the main build

O Use continuous integration (automatic testing on each push, even for

branches)

O Avoid long-lived branches

Commit often

® On the main branch:
O 1. Every commit should address one concept
O 2. Every concept should be in one commit
® On feature branches:
O 1. Make single-concern commits (see next slide)

O 2. From branch back into main: squash and merge

® Easier to understand, review, merge, revert

Make single-concern commits

® Do only one task at a time

O Commit after each one

® (Create a branch for each simultaneous task
O Need to keep track of all your branches, merge
O Easier to share work with teammates

® Do multiple tasks in one working copy with multiple
branches

) 13

O Commit only a subset of files (use Git's “staging area” with git add)

Do not commit all files

Use a .gitignore file (templates on Github)

Don’t commit:

e Binary files

e Logfiles

e Temporary files

Plan ahead to avoid merge conflicts

® Modularize your work
O Divide work so that individuals or subteams “own” a module
O Other team members only need to understand its specification

O Requires good documentation and testing

® Communicate about changes that may conflict

o Examples (rare!): reformat whole codebase, move directories, rename
fundamental data structures

Git workflow and usage

Cloning

When you clone a repo you are creating a local copy on
your computer that you can sync with the remote

Ideal for contributing directly to a repo alongside other

developers

After a clone, you
can use git push to
send local changes
to remote repo

Server

Repository

o2 5 2
“\\ =3
Q Q

D‘/S

\nd

Repository Repository Repository
Working Working Working

copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

(6

itHub (remote) A

Clone
(copy — often on remote (local) host)

Fo rking (GitHub concept, not a git concept)

- Creates a new, unrelated repository (GitHub project)
that is initially an exact copy

- Changes to either repository do not affect the other

- Allows you to evolve the repo without impacting the
original

- |If original repo is deleted, forked repo will still exist

GitHub Fork
(full independent copy)

Lo T LRI\

- |t’s possible to update the original but only with pull
requests (original owner approves or not)

Git; workflows

<start day>

git pull

git checkout -b name

<work on a task>

glit commit

glit commit

git merge

<run tests>

glit push

<start another another task>
glit checkout -b name2
<repeat>

Local | Remote

working staging
directory area

Learn more!

e Learn about git - many resources available for tips and

practices
Michael Ernst: \VC Concepts and Pull Requests
Atlassian merge vs rebase

Git branching and merging
Video tutorial “Git, GitHub, & GitHub Desktop”

O O O O

https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE

Upcoming Assignments

e In-class exercise on Friday: Git bisect

o Set up ahead of time for Friday
o Look for an Ed posting to confirm before starting setup

e Homework assignment: Git setup
o Check the website later today

