
CSE 403
Software Engineering

Version control and Git

Why use version control

2

11:51p
m

Why use version control

3

11:51pm 11:57pm

Why use version control – backup/restore

4

11:51pm 11:57pm 11:58pm 11:59pm

❌

Why use version control – teamwork

5

How are you going to make sense of this?

Why use version control?

11:51pm

Goals of a version control system

Version control records changes to a set of files over time.

This enables you to:

○ Keep a history of your work
■ Summary commit title
■ See which lines were co-changed

○ Checkpoint specific versions (known good state)
■ Recover specific state

○ Binary search over revisions
■ Find the one that introduced a defect

○ Undo arbitrary changes
■ Without affecting prior or subsequent changes

○ Maintain multiple releases of your product

Who uses version control?

Everyone should use version control
● Large teams (100+ developers)
● Small teams (2-10+ developers, like this course!)
● Yourself (and your future self)

○ Multiple features or multiple computers

Example application domains
● Software development
● Research (infrastructure and data)
● Documents (See: “Version History” in Google Docs)

Version Control

Working by yourself

● One central repository.

● All users commit their changes
to a central repository.

● Each user has a working copy.
As soon as they commit, the
repository gets updated.

● Examples: SVN (Subversion), CVS.

Centralized version control (the old way)

Distributed version control (the new way)

● Multiple copies of a repository.

● Each user commits to a local
(private) repository.

● All committed changes remain local
unless pushed to another repository.

● No external changes are visible
unless pulled from another repository.

● Examples: Git, Hg (Mercurial).

2 different version control modes

Branch
vs
Clone
Vs
Fork

Multiple versions of your program

What if you have to support:
• Version 1.0.4 vs version 2.0.0
• Windows vs macOS
• Adding a feature
• Fixing a bug

Git handles these!
● Branch: Start a parallel history of changes to the code in the repository
● Clone: Make a copy of the repository to work on code changes
● Fork: Make a copy the repository that will not necessarily be merged

back with original (but can be through a pull request)

Branches

• Git has a basic concept of a branch
○ Branch: one history of changes to the code

• You can have many branches
○ Lightweight - every work item (feature, bug) has its own branch

Commit point represents one
state of the program

MAIN
Branch

Feature
Branch

Branches

• There is one main development branch (called “main”)
• This is considered your latest working version of the code

○ You should always be able to ship “working software” from main

Commit point represents one
state of the program

MAIN
Branch

Branches

• You can have many branches
• Life goal of a branch is to be merged into main and deleted as

quickly as possible
• To develop a feature or bug fix, create a new branch

• And then later merge it with Main
• Why is this a good practice?

Merge point
Branch software merged with

Main (done on GitHub)

Main
Branch

Feature
Branch

git checkout -b branch_name

Branches

MAIN
Branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps Main always working and allows for parallel

development
■ It’s ok to have many branches

Hot fix

Feature
Branch

Branches

• To develop a feature or bug fix, add a new branch
• Why? Keeps Main always working and allows for parallel

development

MAIN
Branch

Hot fix

Feature
Branch

Branches

• To develop a feature or bug fix, add a new branch
• Why? Keeps Main always working and allows for

parallel^2 development

MAIN
Branch

Feature
Branch1

Feature
Branch2

Hot fix

How to merge?

Merging

Scenario where merging is possible

 (2 types: from main and into main)
https://www.atlassian.com/git/tutorials/merging-vs-rebasing

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

First merge: resolve conflicts before pushing to main
https://www.atlassian.com/git/tutorials/merging-vs-rebasing

git merge branch_name

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes into main)

Second merge: pull request to get your changes into main
https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Approve GitHub pull
request

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge: Squash & merge on GitHub

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Initial goal:

Merge:

Merge commit

Squash and merge:

Summary
merge commit

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge conflicts

Conflicts

● Conflicts arise when two users change the same line of a file
● When a conflict arises, the person doing the merge needs to

resolve it by manual inspection

How to avoid merge conflicts?

Merge Algorithm: May Fail to Make a Merge

● Line-by-line merge
reports a problem

● Inspection reveals
they can be merged

Initial code

Change 1 Change 2

Merged (unachievable by
line-based merge)

Still works despite
2 changes

Merge Algorithm: Falsely Successful Merge

● Can merge cleanly (no
textual merge conflicts)

● Resulting code is
incorrect

Initial code

Change 1 Change 2

Merged (incorrectly)

Function name
changed

How to avoid merge conflicts

Synchronize with teammates often

● Pull often

○ Avoid getting behind the main branch

● Push as often as practical

○ Don’t destabilize the main build

○ Use continuous integration (automatic testing on each push, even for
branches)

○ Avoid long-lived branches

Commit often

● On the main branch:

○ 1. Every commit should address one concept

○ 2. Every concept should be in one commit

● On feature branches:

○ 1. Make single-concern commits (see next slide)

○ 2. From branch back into main: squash and merge

● Easier to understand, review, merge, revert

Make single-concern commits

● Do only one task at a time
○ Commit after each one

● Create a branch for each simultaneous task
○ Need to keep track of all your branches, merge

○ Easier to share work with teammates

● Do multiple tasks in one working copy with multiple
branches
○ Commit only a subset of files (use Git’s “staging area” with git add)

Do not commit all files

Use a .gitignore file (templates on Github)

Don’t commit:
● Binary files
● Log files
● Temporary files

Plan ahead to avoid merge conflicts

● Modularize your work

○ Divide work so that individuals or subteams “own” a module

○ Other team members only need to understand its specification

○ Requires good documentation and testing

● Communicate about changes that may conflict
○ Examples (rare!): reformat whole codebase, move directories, rename

fundamental data structures

Git workflow and usage

Cloning

Clone
(copy – often on remote (local) host)

• When you clone a repo you are creating a local copy on
your computer that you can sync with the remote

• Ideal for contributing directly to a repo alongside other
developers

 GitHub (remote)• After a clone, you
can use git push to
send local changes
to remote repo

Forking (GitHub concept, not a git concept)

• Creates a new, unrelated repository (GitHub project)
that is initially an exact copy

• Changes to either repository do not affect the other
• Allows you to evolve the repo without impacting the

original
• If original repo is deleted, forked repo will still exist

Fork
(full independent copy)

• It’s possible to update the original but only with pull
requests (original owner approves or not)

GitHub

Git: workflows

<start day>
git pull
git checkout -b name
<work on a task>
git commit
git commit
git merge
<run tests>
git push
<start another another task>
git checkout -b name2
<repeat>

git pull

Learn more!

● Learn about git - many resources available for tips and
practices
○ Michael Ernst: VC Concepts and Pull Requests
○ Atlassian merge vs rebase
○ Git branching and merging
○ Video tutorial “Git, GitHub, & GitHub Desktop”

https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE

Upcoming Assignments

● In-class exercise on Friday: Git bisect
○ Set up ahead of time for Friday
○ Look for an Ed posting to confirm before starting setup

● Homework assignment: Git setup
○ Check the website later today

