
Requirements

Logistics

● One deliverable due every Tuesday 11:59pm
● Progress report and agenda due every Wednesday 8pm

● Team meeting every Tuesday 1:30pm -- 2:20pm
● Project meeting every Thursday 1:30pm -- 2:20pm

Suggested workflow:
● Wednesday: everyone has read the assignment

○ General assignment questions on Slack
○ Progress report and agenda: task assignment and

project-specific questions
● Thursday: resolve project-specific questions in project meeting
● …
● Tuesday: final checks (all tasks done before the meeting)

Lecture outline

• What are requirements?
• How can we gather requirements?
• How can we document them? (Use cases)

Recap: Life-cycle stages
Virtually all SDLC models have the following stages:
● Requirements ⇐ Our focus today
● Design
● Implementation
● Testing
● Release
● Maintenance

Traditional models:
● Waterfall, Prototyping, Spiral, etc.

Agile models:
● eXtreme Programming, Scrum, etc.

Software requirements

Requirements specify what to build

• tell “what” and not “how”

• tell the problem, not the solution

• reflect system design, not software design

“What vs. how” is relative

• One person’s what is another person’s how.
– “One person’s constant is another person’s variable.”

Alan Perlis, “Epigrams on Programming” #1
[first winner of the Turing Award, wrote the first compiler]

• Input file processing is the what, parsing is the how
• Parsing is the what, a stack is the how
• A stack is the what, an array or a linked list is the how
• A linked list is the what, a doubly linked list is the how
• A doubly linked list is the what, Node* is the how

Why requirements?

• Goals of requirements:
– understand precisely what is required of the software
– communicate this understanding precisely to all development

parties
– monitor and control production to ensure that system meets

specification

• Requirements are useful to many people
– customers: show what should be delivered (contractual base)
– managers: scheduling and monitoring (progress indicator)
– designers: provide a spec to design the system
– developers: a range of acceptable implementations / output
– QA / testers: a basis for testing, validation, verification

Value of requirements
The #1 reason that projects succeed is user
involvement

– Standish Group survey of over 8000 projects

Easy access to end users is one of three
critical success factors in rapid-development
[agile] projects.

– Steve McConnell

(1) Understand and serve
the customer better
than anyone else,

(2) forget about
everything else, and

(3) make sure every little
thing you do serves
(1), always and
everywhere

(Summary of Apple’s
original three principles,
Steve Jobs)

Companies recognize this

The customer is always
right

(Marshall Field’s
department store, 1852)

Customer obsession rather
than competitor focus

(One of Amazon’s four
principles)

Classifying requirements

• The classic way to classify requirements:
– functional: map inputs to outputs

• "The user can search either all databases or a subset."

• "Every order gets an ID the user can save to account storage."

– nonfunctional: other user-visible properties
• ilities: dependability, reusability, portability, scalability, performance, safety,

security
• "Our deliverable documents shall conform to the XYZ process."
• "The system shall not disclose any personal user information."

– additional constraints
• e.g., programming language, frameworks, testing infrastructure

• Another way to classify them (S. Faulk)
– Behavioral (user-visible): about the artifact (often measurable)

• features, performance, security

– Development quality attributes: about the process (can be subjective)
• flexibility, maintainability, reusability

General classes of requirements

Example requirements types:
 Feature set
 GUI
 Performance
 Reliability
 Extensibility (support plug-ins)
 Environment (HW, OS, browsers)
 Schedule

Gather requirements from customers

Benefits of working with customers:
– Good relations improve development speed
– Improves perceived development speed
– They don’t always know what they want
– They do know what they want, and it changes

over time

How to engage with customers

- Interviews & hallway conversations
- Observations, shadowing
- Use cases
- Feature list
- Mockups
- Prototyping

Keep your customer (user) at the center of the discussion
Listen, observe, and ask clarifying questions

How to elicit requirements

• Do:
– Talk to the users, or work with them, to learn how they work.
– Ask questions throughout the process — "dig" for requirements.
– Think about why users do something in your app, not just what.
– Allow (and expect) requirements to change later.

• Don't:
– Be too specific or detailed.
– Describe complex business logic or rules of the system.
– Describe the exact user interface used to implement a feature.
– Try to think of everything ahead of time.* (You will fail!)
– Add unnecessary features not wanted by the customers.

Feature creep:
● Gradual accumulation of features over time.

● Beyond what was originally committed and/or actually needed.

Why does feature creep happen? Because features are fun!
● Developers like to code them.
● Sales teams like to brag about them.
● Users (think they) want them.

Why is it bad?
● Puts product delivery at risk
● Too many options, more bugs, more delays, less testing, …
● “Boiled frog” analogy.

Can you think of any products that have had feature creep?

Feature creep/bloat

The machine and the world

17

• The requirements are in the application domain
• The program defines the machine that has an effect

in the application domain
• Example: a database system dealing with books

• Some things in the world are not
represented by a given machine
– Book sequels or trilogies
– Pseudonyms
– Anonymous books

• Some things in the machine do not
represent anything in the world
– Null pointers

– Deleting a record

– Back pointers

Good or bad requirements? (and why?)

• The system will enforce 6.5% sales tax on Washington
purchases.

• The system shall display the elapsed time for the car to
make one circuit around the track within 5 seconds, in
hh:mm:ss format.

• The product will never crash. It will also be secure against
hacks.

• The server backend will be written using PHP or Ruby on
Rails.

• The system will support a large number of connections at
once, and each user will not experience slowness or lag.

• The user can choose a document type from the drop-down
list.

How do we specify requirements?

● Use cases
● Feature list
● Paper UI prototype
● Prototype

Cockburn’s requirements template
1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
5. Other

a. Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies

b. Business rules (constraints)
c. Performance demands
d. Security, documentation
e. Usability
f. Portability

g. Unresolved (deferred)
6. Human factors (legal, political, organizational, training)

A template leads to uniformity (good for you and the customer)

Challenges and common mistakes

Challenges
● Unclear scope and unclear requirements.
● Changing/evolving requirements.
● Finding the right balance (depends on customer):

○ Comprehensible vs. detailed.
○ Graphics vs. tables and explicit and precise wording.
○ Short and timely vs. complete and late.

Common Mistakes
● Implementation details instead of requirements.
● Projection of own models/ideas.
● Feature creep/bloat.

How to specify requirements

• Use cases
• Personas, user scenarios
• Storyboarding
• Paper prototyping
• Prototyping
• UML
• …

Use cases

What is a use case?

24

A use case is a written description of a user's
interaction with the software system to

accomplish a goal

Let’s start with some terminology

• Actor: user interacting with the system (may be
another system)

• System: the software product

• Goal: desired outcome of the primary actor

• Flow: interactive steps to achieve the goals

Use cases

• A use case is an example behavior of the system

• Example:
– Jane has a meeting at 10AM
– Jim tries to schedule another meeting for her at 10AM
– He is notified about the conflict

• A use case is a written description of a user’s interaction with the
software system to accomplish a goal

• A use case characterizes one way of using a system
• It represents a dialogue, or flow of events, between a user and the

system, from the user’s point of view
• It captures functional (input-output) requirements
• Similar to Extreme Programming “stories” and CRC (class

responsibility collaborator) cards

An example

Goal Reserve a book in the library app

Actor Library patron

1. Patron selects the search screen
2. System presents a search box

(with filters)
3. Patron types in the book title
4. System presents the books that

match and branch locations
5. Patron selects location and

reserves
6. System confirms and re-presents

home page

Main
(success)
flow

Qualities of a good use case
• starts with a request from an actor to the system
• ends with the production of all the answers to the

request
• defines the interactions (between system and

actors) related to the function
• takes into account the actor's point of view, not

the system's
• focuses on interaction, not internal system

activities
• doesn't describe the GUI in detail
• has 3-9 steps in the main success scenario
• is easy to read
• summary fits on a page

Benefits of use cases
• Establish an understanding between

the customer and the system
developers of the requirements
(success scenarios)

• Alert developers of problematic
situations (extension scenarios)

• Capture a level of functionality to
plan around (list of goals)

Actors: the agents in a use case
Actor: something that interacts with your

system and appears in a use case
Examples:

● a human
● external hardware (like a timer)
● another system

Primary actor: actor who initiates the action

Goal: desired outcome of the primary actor

Do use cases capture these?
Which of these requirements should be

represented directly in a use case?

1. Order cost = order item costs * 1.065 tax
2. Promotions may not run longer than 6 months
3. Customers only become Preferred after 1 year
4. A customer has one and only one sales contact
5. Response time is less than 2 seconds
6. Uptime requirement is 99.8%
7. Number of simultaneous users will be 200 max

Styles of use cases
1. Use case diagram

– often in UML, the Unified Modeling Language
2. Informal use case
3. Formal use case

(≠ formal specification)

Let's examine each of these in detail...

1. Use case summary diagrams

The overall list of your system's use cases
can be drawn as high-level diagrams, with:
– actors as stick-men, with their names (nouns)
– use cases as ellipses, with their names (verbs)
– line associations, connecting an actor to a use

case in which that actor participates
– use cases can be connected to other cases

that they use / rely on

Library patron

Check out book

Use case summary diagrams

It can be useful to create a list or table of primary
actors and their "goals" (use cases they start). The
diagram will then capture this material.

Actor Goal
Library Patron Search for a book

  Check out a book

  Return a book

Librarian Search for a book

  Check availability

  Request a book from
another library

Use case summary diagram 1
Library System

Search

Record
new

Reserve

Check
out

Librarian

Library Patron

Gen
catalog

Use case summary diagram 2

Investment
System

2. Informal use case
Informal use case is written as a paragraph

describing the scenario/interaction

• Example:
– Patron Loses a Book

The library patron reports to the librarian that she has
lost a book.
The librarian prints out the library record and asks
patron to speak with the head librarian, who will arrange
for the patron to pay a fee.
The system will be updated to reflect lost book, and
patron's record is updated as well.
The head librarian may authorize purchase of a
replacement book.

Structured natural language

• I
– I.A

• I.A.ii
– I.A.ii.3

» I.A.ii.3.q

• Although not ideal, it is almost always better than
unstructured natural language
– Unless the structure is used as an excuse to avoid

content
• You will probably use something in this general

style

37

3. Formal use case

Goal Patron wishes to reserve a book using the online
catalog

Primary
actor

Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end
condition

Book is reserved

Failure end
condition

Book is not reserved

Trigger Patron logs into system

Main Success
Scenario

1. Patron enters account and password
2. System verifies and logs patron in
3. System presents catalog with search screen
4. Patron enters book title
5. System finds match and presents location

choices to patron
6. Patron selects location and reserves book
7. System confirms reservation and re-presents

catalog
Extensions
 (error
scenarios)

2a. Password is incorrect
 2a.1 System returns patron to login screen
 2a.2 Patron backs out or tries again
5a. System cannot find book
 5a.1 …

Variations
 (alternative
scenarios)

4. Patron enters author or subject

What notation is good?

• There are standard templates for requirements documents,
diagrams, etc. with specific rules. Is this a good thing?
Should we use these standards or make up our own?

– Good: standards are helpful as a template or starting point;
Others are more likely to understand

– But don't be a slave to formal rules or use a model/scheme that
doesn't fit your project's needs.

4 steps for creating a use case

1. Identify actors and goals

● Actors: What users and (sub)systems interact with our system?

● Goals: What does each actor need our system to do?

1. Identify actors and goals

2. Write the main success scenario

● Main success scenario is the preferred "happy path”

○ Easiest to read and understand

○ Everything else is a complication on this

● Capture each actor's intent and responsibility, from trigger to goal

○ State what information passes between actors

○ Number each step (line)

4 steps for creating a use case

4 steps for creating a use case
1. Identify actors and goals

2. Write the main success scenario

3. List the failure extensions
● Many steps can fail (e.g., denied credit card, out of stock)

○ Note each failure condition separately, after the main success scenario
● Describe failure-handling

○ recoverable: back to main scenario (low stock + reduce quantity)

○ non-recoverable: fails (out of stock)

○ each scenario goes from trigger to completion
● Label with step number (success scenario line) and letter

○ 5a <failure condition>; 5a.1 <fail with error message>

○ 5b <failure condition>; 5b.1 <action>; 5b.2 <continue at failure step 7>

4 steps for creating a use case

1. Identify actors and goals

2. Write the main success scenario

3. List the failure extensions

4. List the variations
● Steps can have alternative behaviors

○ Label alternatives with step number (success

scenario line) and symbol
■ 5’ <Alternative 1 for step 5>

■ 5’’ <Alternative 2 for step 5>

Use case description

• How and when it begins and ends

• The interactions between the use case and its
actors, including when the interaction occurs
and what is exchanged

• How and when the use case will need data
from or store data to the system

• How and when concepts of the problem
domain are handled

Jacobson example: recycling
The course of events starts when the customer
presses the “Start-Button” on the customer panel.
The panel’s built-in sensors are thereby activated.

The customer can now return deposit items via
the customer panel. The sensors inform the
system that an object has been inserted, they also
measure the deposit item and return the result to
the system.

The system uses the measurement result to
determine the type of deposit item: can, bottle or
crate.

The day total for the received deposit item type
is incremented as is the number of returned
deposit items of the current type that this customer
has returned...

Another example: Buy a product
http://ontolog.cim3.net/wiki/UseCasesSimpleTextExample.html

1. Customer browses through catalog and selects items to buy

2. Customer goes to check out

3. Customer fills in shipping information

4. System presents full pricing information, including shipping

5. Customer fills in credit card information

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirming email to customer
• Alternative: Authorization Failure

– At step 6, system fails to authorize credit purchase

– Allow customer to re-enter credit card information and re-try

• Alternative: Regular Customer

– 3a. System displays current shipping information, pricing information, and
last four digits of credit card information

– 3b. Customer may accept or override these defaults

– Return to primary scenario at step 6

What is a use case?
A use case is a written description of a user's

interaction with the software system to accomplish

a goal.

● It is an example behavior of the system

● Written from an actor's point of view, not the system’s

● 3-9 clearly written steps lead to a “main success scenario”

Benefits of use cases

● Establish an understanding between the

customer and the developers of the

requirements (success scenarios)

● Alert developers of special cases (alternatives)

and error cases (exceptions) to test (extension

scenarios)

● Capture a level of functionality (list of goals)

What is an extension?
A possible branch in a use case, e.g., triggered by an error; useful for

identifying what edge cases need to be handled/tested

Do
● Think about how every step of the use case could fail

● Give a plausible response to each extension from the system

● Response should either jump to another step of the case, or end it

Don’t
● List things outside the use case ("User's power goes out")

● Make unreasonable assumptions ("DB will never fail")

● List a remedy that your system can't actually implement

● Go overboard

Qualities of a good use case
● Focuses on interaction

○ Starts with a request from an actor to the system

○ Ends with the production of all the answers to the request

● Focuses on essential behaviors, from actor’s point of view
○ Does not describe internal system activities

○ Does not describe the GUI in detail

● Concise, clear, and accessible to non-programmers
○ Easy to read

○ Summary fits on a page

○ Main success scenario and extensions

Use cases vs. other requirements

Which of the following requirements should be
directly represented as a use case?

● Special deals may not run longer than 6

months.

● Customers only become preferred after 1 year.

● A customer has one and only one sales contact.

● Database response time is less than 2 seconds.

● Web site uptime requirement is 99.8%.

● Number of simultaneous users will be 200 max.

Styles of use cases

● Use case diagram (often in UML)

● Textual use case
○ Formal use case (≠ formal specification)

○ Informal use case

Use case diagram
“For reasons that remain a mystery to me, many people have focused on the stick
figures and ellipses in use case writing since Jacobson's first book came out, and
neglected to notice that use cases are fundamentally a text form.”
[Writing Effective Use Cases, Alistair Cockburn, 2000]

Formal use case

Formal use case: example

Use case diagram vs. textual use
case

Which one would you choose and why?

Informal use case: example

Patron loses a book

The library patron reports to the librarian that she

has lost a book. The librarian prints out the library

record and asks patron to speak with the head

librarian, who will arrange for the patron to pay a

fee. The system will be updated to reflect lost

book, and patron's record is updated as well. The

head librarian may authorize purchase of a

replacement book.

Informal use case with added
structureUse case 1: Patron loses a book

1.

a.

i.

Although not ideal, it is almost always better than unstructured text.

 You will probably use something in this general style
or a template for formal use cases.

Use case wrap up (time
permitting)

Which of the following requirements could be directly
represented as a use case?

• Special deals may not run longer than 6 months
• Customers only become preferred after 1 year
• A customer has one and only one sales contact
• Database response time is less than 2 seconds
• Web site uptime requirement is 99.8%
• Number of simultaneous users will be 200 max

Requirements for a music player

66

Are these good requirements?

• Available on web and mobile
• Provide volume control
• Provide ability to flag favorites using a pulldown

menu
• Enable variable playback speed
• Propose songs using ChatGPT recommendations
• Propose songs based on customer selected

genres
• Written in JavaScript for extensibility and reliability

Pulling it all together

How much is enough?

You have to find a balance
• comprehensible vs. detailed
• graphics vs. explicit wording and tables
• short and timely vs. complete and late

Your balance may differ with each customer
depending on your relationship and flexibility

Try it with a use case for
your project

69

Goal

Actor

Main
(succes
s) flow

1.
2.
3.
4.
…

- Capture your thoughts
–

We’ll rotate today
through groups to
discuss your use cases

Let’s double click on these other
flows

70

Variations and exceptions can be thought of as branches in
a use case useful for identifying other situations that need
to be handled

Variation (alternate) flows:

• These paths describe
extensions on the main
theme

• Another way to meet the
goal

• Library search - Patron
enters an author or
subject or category

Let’s double click on these other
flows

71

Exception (error) flows:

• These paths describe
failure conditions

• What happens when
the goal is not achieved

• Library search - no
book is found, system
times out

We can capture this in our
template

72

Goal Reserve a book in the library app

Actor Library patron

Main
(success
) flow

1. Patron selects the search screen
2. System presents a search box (with

filters)
3. Patron types in the book title
4. System presents the books that

match and branch locations
5. Patron selects location and reserves
6. System confirms and represents

home page

Variation
(alternat
e) flow

(In step 3)
3.1 Patron types in an author …
3.2 Patron types in a subject …

Here’s another example –
ATM machine

73

Goal Withdraw money

Actor Bank patron

System ATM

Main
(success
) flow

Exceptio
n
flow

1. System displays account types

2. User chooses type

3. System asks for amount to withdraw

4. User enters amount

5. System debits user’s account and
dispenses money

6. User removes money

7. System prints and dispenses receipt
…(In step 5)
5.1.a System notifies that account funds are
insufficient
5.1.b System displays current balance [and
returns to step 1]

Precondi
tion

Authenticate
d in

Trigger Select
withdraw

Try it with a use case for
your project

74

Goal

Actor

Main (success)
Flow

Variation
(alternate) Flow

Exception
(error) Flow

- Capture your thoughts –
We’ll hear from another
few teams

Summing up use cases

75

• Focus on interaction
• Start with a request from an actor to the

system
• End with the production of all the answers

to the request

• Focus on essential behaviors, from actor’s
point of view
• Don’t describe internal system activities
• Don’t describe the GUI in detail

• Be concise, clear, and accessible to
non-programmers
• Easy to read
• Summary fits on a page
• Main success scenario, and variations and

exceptions

Some references

76

Basic Use Case Template
(Cockburn)
https://canvas.uw.edu/co
urses/1680496/files/folde
r/UseCase%20Template?
preview=110607742

and/or

Use Cases (Usability.gov)
https://www.usability.go
v/how-to-and-tools/meth
ods/use-cases.html

https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html

Switching gears to another
technique …

1. What are techniques used to
specify requirements?
– Use cases
– Personas and user scenarios 🡨 we

are here
– Storyboarding
– Paper prototyping
– Prototyping
– UML
– Feature list
– …

77

What to Consider When Writing Scenarios
Good scenarios are concise but answer the following key questions:

● Who is the user? Use the personas that have been developed to reflect

the real, major user groups coming to your site.

● Why does the user come to the site? Note what motivates the user to

come to the site and their expectations upon arrival, if any.

● What goals does he/she have? Through task analysis, you can better

understand the what the user wants on your site and therefore what the

site must have for them to leave satisfied.

78

Personas

A persona is a description of a person who is
representative of a population using your system

Each persona may have a different perspective of
what they need

Example: Library catalog service (UW Libs)

Persona: Admin

Persona: Librarian

Persona: Student

Persona: Instructor

79

What might be
an analogy to a

persona in a
use case?

Personas can be described
with cards

80

• 20 in 2022 (mockplus.com)

Mockplus: User Persona Templates for Free Download

Cards typically include:

• Persona name and
photo/image

• A quote that captures
their goals and
motivations

• Demographics (group
they represent)

• Computer competence
and usage

• Wants and needs
• Frustrations and pain

points

https://www.mockplus.com/blog/post/user-persona-template
https://www.mockplus.com/blog/post/user-persona-template

Lots of great examples on
the web

81

Mockplus: User Persona Templates for Free Download

https://www.mockplus.com/blog/post/user-persona-template

User scenarios

82

For each persona you can define the requirements from
that person’s perspective through a user scenario

Example: As an instructor, I am constantly looking for
class resources that are relevant and up to date.
Moreover, when I find a resource, I want to know it’s
available free-of-charge for the students and comes
with online access.

Example: As a student, I want to be able to have the
search provide smart results, so that I don’t spend
hours wading through irrelevant matches. I’d like to
prioritize results that are timely, in-the-news,
most-popular, and most-referenced across the
industry. I’d also like each result to come with a
summary for quick scanning.

Writing user scenarios

83

From:
https://www.usability.gov/how-to-and-tools/methods/sce
narios.html

Doesn’t this sound like use
cases!

persona ~= actor
scenario ~= flow

What to Consider When Writing Scenarios
Good scenarios are concise but answer the following key questions:

● Who is the user? Use the personas that have been developed to reflect the

real, major user groups coming to your site.

● Why does the user come to the site? Note what motivates the user to

come to the site and their expectations upon arrival, if any.

● What goals does he/she have? Through task analysis, you can better

understand the what the user wants on your site and therefore what the site

must have for them to leave satisfied.

https://www.usability.gov/how-to-and-tools/methods/scenarios.html
https://www.usability.gov/how-to-and-tools/methods/scenarios.html
https://www.usability.gov/how-to-and-tools/methods/scenarios.html

Personas and scenarios are
hugely valuable

• They tap into a fundamental human skill—the ability to
make predictions about how other people will react
based on mental models of them

• Enable us to capture inferences about the needs and
desires of audience segments

• Draw attention to “pain points” and opportunity for new
solutions

• Serve to communicate user characteristics and their
individual types of requirements in a compact and easily
understood way

84

