How the customer
explained it

Requirements

How the Project
Leader understood #t

How the Analyst
designed it

How the Programmer
wrote it

How the Business
Consultant described it

How the project
was documented

What operations
installed

How the customer
was billed

How it was supported

What the customer
really needed

Logistics

e One deliverable due every Tuesday 11: 59pr[
e Progress report and agenda due every Wednesday 8pm

o Team meeting every Tuesday 1:30pm -- 2:20pm
e Project meeting every Thursday 1:30pm -- 2:20pm

Suggested workflow:
e Waednesday: everyone has read the assignment

o General assignment questions on Slack
o Progress report and agenda: task assignment and
project-specific questions

e Thursday: resolve project-specific questions in project meeting
o

e Tuesday: final checks (all tasks done before the meeting)

Lecture outline

* \What are requirements?
 How can we gather requirements”?
* How can we document them? (Use cases)

Recap: Life-cycle stages

Virtually all SDLC models have the following stages:
e Requirements & Our focus today

e Design

e Implementation

e Testing

e Release

e Maintenance

Traditional models:
o Waterfall, Prototyping, Spiral, etc.

Agile models:
e eXtreme Programming, Scrum, etc.

Software requirements

Requirements specify what to build
e tell “what” and not “how”
* tell the problem, not the solution

* reflect system design, not software design

“What vs. how” is relative

* One person’s what is another person’s how.

— “One person’s constant is another person’s variable.”
Alan Perlis, “Epigrams on Programming” #1
[first winner of the Turing Award, wrote the first compiler]

* |[nput file processing is the what, parsing is the how

* Parsing is the what, a stack is the how

* Astackis the what, an array or a linked list is the how
* Alinked list is the what, a doubly linked list is the how
* A doubly linked list is the what, Node * is the how

Why requirements?

* Goals of requirements:
— understand precisely what is required of the software

— communicate this understanding precisely to all development
parties

— monitor and control production to ensure that system meets
specification

* Requirements are useful to many people
— customers: show what should be delivered (contractual base)
— managers: scheduling and monitoring (progress indicator)
— designers: provide a spec to design the system
— developers: arange of acceptable implementations / output
— QA / testers: a basis for testing, validation, verification

Value of requirements

The #1 reason that projects succeed is user
involvement

— Standish Group survey of over 8000 projects

Easy access to end users is one of three
critical success factors in rapid-development
[agile] projects.

— Steve McConnell

Companies recognize this

e : Understand and serve
The customer is always \
the customer better

right W%/ than anyone else,
2) forget about
(Marshall Field’s J (2) forget abou

d t t ot 1852 everything else, and
\Ceparment S) (3) make sure every little

thing you do serves
-L (1), always and

/'Customer obsession rather ' everywhere
than competitor focus

a (Summary of Apple’s
(One of Amazon’s four

i original three principles,
\principles) J \Sleve Jobs) /

Classifying requirements

* The classic way to classify requirements:
— functional: map inputs to outputs

* "The user can search either all databases or a subset."
* "Every order gets an ID the user can save to account storage."
— nonfunctional: other user-visible properties

* ilities: dependability, reusability, portability, scalability, performance, safety,
security

e "Our deliverable documents shall conform to the XYZ process."

e "The system shall not disclose any personal user information."

— additional constraints
* e.g., programming language, frameworks, testing infrastructure

* Another way to classify them (S. Faulk)
— Behavioral (user-visible): about the artifact (often measurable)
» features, performance, security

— Development quality attributes: about the process (can be subjective)
* flexibility, maintainability, reusability

General classes of requirements

Example requirements types:
Feature set

GUI

Performance

Reliability

Extensibility (support plug-ins)
Environment (HW, OS, browsers)
Schedule

Gather requirements from customers

Benefits of working with customers:
— Good relations improve development speed
— Improves perceived development speed
— They don’t always know what they want

— They do know what they want, and it changes
over time

-

T WON'T KNOW WHAT
T CAN ACCOMPLISH
UNTIL YOU TELL ME

WHAT THE SOFTWARE

CAN DO.

\!

T'LL NEED TO KNOW FIRST OF ALL,
YOUR REQUIREMENTS WHAT ARE YOU
BEFORE I START TO TRYING TO
DESIGN THE SOFTWARE. ACCOMPLISH?

E-mail: SCOTTADAMS® ACL COM

/" TRY TOGET THIS
CONCEPT THROUGH YOUR
THICK SKULL: THE
SOFTWARE CAN DO
WHATEVER T DESIGN
1T T0 DO!

/

J

© Scott Adams, Inc./Dist. by UFS. Inc.

I™M TRYING TO
MAKE YOU DESIGN
MY SOFTWARE.

~ © 2008 Scolt Adams, Inc. /Dist by UFS. inc

T MEAN WHAT ARE
YOU TRYING TO
ACCOMPLISH WITH
THE SOFTWARE?

CAN YOU DESIGN
IT TO TELL YOU
MY REQUIREMENTS?

How to engage with customers

- Interviews & hallway conversations
- Observations, shadowing

- Use cases

- Feature list

- Mockups

- Prototyping

Keep your customer (user) at the center of the discussion
Listen, observe, and ask clarifying questions

How to elicit requirements

— Talk to the users, or work with them, to learn how they work.

— Ask questions throughout the process — "dig" for requirements.
— Think about why users do something in your app, not just what.
— Allow (and expect) requirements to change later.

 Don't:
— Be too specific or detailed.
— Describe complex business logic or rules of the system.
— Describe the exact user interface used to implement a feature.
— Try to think of everything ahead of time.* (You will fail!)
— Add unnecessary features not wanted by the customers.

Feature creep/bloat

Feature creep:
e Gradual accumulation of features over time.
e Beyond what was originally committed and/or actually needed.

Why does feature creep happen? Because features are fun!

e Developers like to code them.
® Sales teams like to brag about them.
® Users (think they) want them.

Why is it bad?
® Puts product delivery at risk

e Too many options, more bugs, more delays, less testing, ...
e “Boiled frog” analogy.

Can you think of any products that have had feature creep?

The machine and the world
* The requirements are in the application domain

* The program defines the machine that has an effect
in the application domain

 Example: a database system dealing with books

Records,
databases,
pointers, etc.

Books, Authors,

Titles, etc.

The World The Machine

* Some things in the world are not « Some things in the machine do not

represented by a siven .machme represent anything in the world
— Book sequels or trilogies ,
— Null pointers

— Pseudonyms

— Anonymous books — Deleting a record

— Back pointers 17

Good or bad requirements? (and why?)

* The system will enforce 6.5% sales tax on Washington
purchases.

* The system shall display the elapsed time for the car to
make one circuit around the track within 5 seconds, in
hh:mm:ss format.

* The product will never crash. It will also be secure against
hacks.

* The server backend will be written using PHP or Ruby on
Rails.

* The system will support a large number of connections at
once, and each user will not experience slowness or lag.

* The user can choose a document type from the drop-down
list.

How do we specify requirements?

o Use cases

o Feature list

« Paper Ul prototype
o Prototype

Cockburn’s requirements template

1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
9. Other
a. Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies -
b. Business rules (constraints)
Cc. Performance demands
d. Security, documentation
e. Usability
f. Portability
g. Unresolved (deferred)
6. Human factors (legal, political, organizational, training)

A template leads to uniformity (good for you and the customer)

Challenges and common mistakes

Challenges
e Unclear scope and unclear requirements.
e Changing/evolving requirements.

e Finding the right balance (depends on customer):
o Comprehensible vs. detailed.
o @Graphics vs. tables and explicit and precise wording.
o Short and timely vs. complete and late.

Common Mistakes

e Implementation details instead of requirements.
e Projection of own models/ideas.

o Feature creep/bloat.

How to specify requirements

* Use cases

* Personas, user scenarios
* Storyboarding

* Paper prototyping

* Prototyping

 UML

Use cases

What is a use case?

A use case is a written description of a user's
interaction with the software system to
accomplish a goal

Let’s start with some terminology

* Actor: user interacting with the system (may be
another system)

» System: the software product
* Goal: desired outcome of the primary actor

* Flow: interactive steps to achieve the goals
24

Use cases

* A use case is an example behavior of the system

* Example:
— Jane has a meeting at 10AM

— Jim tries to schedule another meeting for her at 10AM
— He is notified about the conflict

* A use case is a written description of a user’s interaction with the
software system to accomplish a goal

* A use case characterizes one way of using a system

* It represents a dialogue, or flow of events, between a user and the
system, from the user’s point of view

e It captures functional (input-output) requirements

e Similar to Extreme Programming “stories” and CRC (class
responsibility collaborator) cards

@ Q. UW Libraries

S® Search

SEARCH SEARCH
A n exa m p I e Search anything s * Aricles. Books and More

Goal Reserve a book in the library app

Actor Library patron

Main 1. Patron selects the search screen
(success) 2. System presents a search box
flow (with filters)

3. Patron types in the book title

4. System presents the books that
match and branch locations

5. Patron selects location and
reserves

6. System confirms and re-presents
home page

Qualities of a good use case

« starts with a request from an actor to the system

» ends with the production of all the answers to the
request

* defines the interactions (between system and
actors) related to the function

» takes into account the actor's point of view, not
the system's

 focuses on interaction, not internal system
activities

» doesn't describe the GUI in detall

* has 3-9 steps in the main success scenario

* Is easy to read

« summary fits on a page

Benefits of use cases

» Establish an understanding between
the customer and the system
developers of the requirements
(success scenarios)

 Alert developers of problematic
situations (extension scenarios)

« Capture a level of functionality to
plan around (list of goals)

Actors: the agents in a use case

Actor: something that interacts with your
system and appears in a use case
Examples:

. a human
. external hardware (like a timer)
. another system

Primary actor: actor who initiates the action

Goal: desired outcome of the primary actor

Do use cases capture these?

Which of these requirements should be
represented directly in a use case?

NoOhRWNE

Order cost = order item costs * 1.065 tax
Promotions may not run longer than 6 months
Customers only become Preferred after 1 year
A customer has one and only one sales contact
Response time is less than 2 seconds

Uptime requirement is 99.8%

Number of simultaneous users will be 200 max

Styles of use cases

1. Use case diagram
— often in UML, the Unified Modeling Language

2. Informal use case

3. Formal use case
(# formal specification)

Let's examine each of these in detail...

1. Use case summary diagrams

The overall list of your system's use cases
can be drawn as high-level diagrams, with:
— actors as stick-men, with their names (nouns)
— use cases as ellipses, with their names (verbs)

— line associations, connecting an actor to a use
case in which that actor participates

— use cases can be connected to other cases
that they use / rely on

. Check out book

Library patron

Use case summary diagrams

It can be useful to create a list or table of primary
actors and their "goals" (use cases they start). The
diagram will then capture this material.

Actor Goal

Library Patron Search for a book

Check out a book

Return a book

Librarian Search for a book

Check avallability

Request a book from
another library

Use case summary diagram 1
Library System

/’// %
% Z Librarian
e /
Reserve

Library Patron /

Use case summary diagram 2

Update
% Accounts

«uses» Accounting
System

Trading Manager Q

/"“\ «uses»

Actor

«extends» Salesperson

Limits
Use Case —————(Exceeded
Investment

System

2. Informal use case

Informal use case is written as a paragraph
describing the scenario/interaction

 Example:

— Patron Loses a Book
The library patron reports to the librarian that she has
lost a book.
The librarian prints out the library record and asks
patron to speak with the head librarian, who will arrange
for the patron to pay a fee.
The system will be updated to reflect lost book, and
patron's record is updated as well.
The head librarian may authorize purchase of a
replacement book.

Structured natural language

° |
— LA
* [LA.iI
— LA.ii.3
» LLA.ii.3.q

e Although not ideal, it is almost always better than
unstructured natural language

— Unless the structure is used as an excuse to avoid
content

* You will probably use something in this general
style

37

3. Formal use case

Goal Patron wishes to reserve a book using the online
catalog

Primary Patron

actor

Scope Library system

Level User

Precondition

Patron is at the login screen

Success end

Book is reserved

condition

Failure end Book is not reserved
condition

Trigger Patron logs into system

Main Success
Scenario

A A

Patron enters account and password
System verifies and logs patron in

System presents catalog with search screen
Patron enters book title

System finds match and presents location
choices to patron

Patron selects location and reserves book

System confirms reservation and re-presents
catalog

Extensions

(error
scenarios)

2a.

Password is incorrect
2a.1 System returns patron to login screen
2a.2 Patron backs out or tries again

5a. System cannot find book

5a.1...

Variations

(alternative
scenarios)

4. Patron enters author or subject

What notation is good?

Figure 7.3. UML use cases—so simple a child could do it!

%%

\ J

* There are standard templates for requirements documents,
diagrams, etc. with specific rules. Is this a good thing?
Should we use these standards or make up our own?

e

— Good: standards are helpful as a template or starting point;
Others are more likely to understand

— But don't be a slave to formal rules or use a model/scheme that
doesn't fit your project's needs.

4 steps for creating a use case

1. ldentify actors and goals

® Actors: What users and (sub)systems interact with our system?

® Goals: What does each actor need our system to do?

4 steps for creating a use case

1. ldentify actors and goals

2. Write the main success scenario

® Main success scenario is the preferred "happy path”

o Easiest to read and understand
o Everything else is a complication on this

e Capture each actor's intent and responsibility, from trigger to goal

o State what information passes between actors
o Number each step (line)

4 steps for creating a use case

1. ldentify actors and goals
2. Write the main success scenario

3. List the failure extensions
e Many steps can fail (e.g., denied credit card, out of stock)
o Note each failure condition separately, after the main success scenario

® Describe failure-handling
o recoverable: back to main scenario (low stock + reduce quantity)

o non-recoverable: fails (out of stock)
o each scenario goes from trigger to completion

® Label with step number (success scenario line) and letter
o 5a <failure condition>; 5a.1 <fail with error message>

o 5b <failure condition>; 5b.1 <action>; 5b.2 <continue at failure step 7>

4 steps for creating a use case

1. ldentify actors and goals
2. Write the main success scenario
3. List the failure extensions

4. List the variations

® Steps can have alternative behaviors
o Label alternatives with step number (success

scenario line) and symbol

« 5’ <Alternative 1 for step 5>
=« 5" <Alternative 2 for step 5>

Use case description

* How and when it begins and ends

* The interactions between the use case and its
actors, including when the interaction occurs
and what is exchanged

* How and when the use case will need data
from or store data to the system

* How and when concepts of the problem
domain are handled

Jacobson example: recycling

The course of events starts when the customer
presses the “Start-Button” on the customer panel.
The panel’s built-in sensors are thereby activated.

The customer can now return deposit items via
the customer panel. The sensors inform the
system that an object has been inserted, they also
measure the deposit item and return the result to
the system.

The system uses the measurement result to
determine the type of deposit item: can, bottle or
crate.

The day total for the received deposit item type
IS Incremented as is the number of returned
deposit items of the current type that this customer
has returned...

Another example: Buy a product

http://ontolog.cim3.net/wiki/UseCasesSimpleTextExample.html
Customer browses through catalog and selects items to buy

Customer goes to check out

Customer fills in shipping information

System presents full pricing information, including shipping
Customer fills in credit card information

System authorizes purchase

System confirms sale immediately

O NO U AEWDNPRE

System sends confirming email to customer
e Alternative: Authorization Failure

— At step 6, system fails to authorize credit purchase

— Allow customer to re-enter credit card information and re-try
e Alternative: Regular Customer

— 3a. System displays current shipping information, pricing information, and
last four digits of credit card information

— 3b. Customer may accept or override these defaults
— Return to primary scenario at step 6

What is a use case?

A use case is a written description of a user's
interaction with the software system to accomplish
a goal.

® Itis an example behavior of the system
e \Written from an actor's point of view, not the system’s
® 3-9 clearly written steps lead to a “main success scenario”

Benefits of use cases

e Establish an understanding between the
customer and the developers of the
requirements (success scenarios)

o Alert developers of special cases (alternatives)
and error cases (exceptions) to test (extension

scenarios)

e Capture a level of functionality (list of goals)

What is an extension?

A possible branch in a use case, e.g., triggered by an error; useful for
identifying what edge cases need to be handled/tested

Do

® Think about how every step of the use case could fail
® Give a plausible response to each extension from the system
® Response should either jump to another step of the case, or end it

Don’t
List things outside the use case ("User's power goes out")

Make unreasonable assumptions ("DB will never fail")
List a remedy that your system can't actually implement

Go overboard

Qualities of a good use case

® Focuses on interaction

o Starts with a request from an actor to the system
o Ends with the production of all the answers to the request

® Focuses on essential behaviors, from actor’s point of view
o Does not describe internal system activities
o Does not describe the GUI in detail

e Concise, clear, and accessible to non-programmers
o Easy to read
o Summary fits on a page
o Main success scenario and extensions

Use cases vs. other requirements

Which of the following requirements should be
directly represented as a use case?

Special deals may not run longer than 6
months.

Customers only become preferred after 1 year.
A customer has one and only one sales contact.
Database response time is less than 2 seconds.
Web site uptime requirement is 99.8%.
Number of simultaneous users will be 200 max.

Styles of use cases

e Use case diagram (often in UML)
e Textual use case

o Formal use case (# formal specification)
o Informal use case

Use case diagram

“For reasons that remain a mystery to me, many people have focused on the stick
figures and ellipses in use case writing since Jacobson's first book came out, and

neglected to notice that use cases are fundamentally a text form.”
[Writing Effective Use Cases, Alistair Cockburn, 2000]

2ybam Boun dey

Crder FEd o P By Crder
Food — Wre

——
con A e o

o Fooca
® \‘ C

f.-‘.cdcnihi {(iIfwinevwm adeed }

Serve
Wire

E=2m32 orirk
{If wine Wne
wan
3]

narvad }

Formal use case

Name The Use Case name. Typicallythe name is of the format <action= + <object=.

ID An identifierthatis unique to each Use Case.

Description A brief sentence that states what the userwants to be able to do and what benefit he will derive.

Actors The type of user who interacts with the systemto accomplish the task. Actors are identified by role
name.

Organizational The value the organization expects to receive from having the functionality described. Ideally this

Benefits is a link directlyto a Business Objective.

Frequency of Use How oftenthe Use Caseis executed.

Triggers Concrete actions made bythe user within the systemto start the Use Case.

Preconditions Any states that the system mustbe in or conditions that must be met before the Use Caseis
started.

Postconditions Any states that the system mustbe in or conditions that must be met after the Use Caseis
completed successfully. These will be metif the Main Course or any Alternate Courses are
followed. Some Exceptions may resultin failure to meetthe Postconditions.

Main Course The mostcommeon path of interactions between the userandthe system.

1. Step 1
2. Step 2

Alternate Courses | Alternate paths throughthe system.
AC1: =condition forthe alternate to be called=
1. Step 1
2. Step 2
AC2: =conditionforthe alternate to be called=
1. Step 1

Exceptions Exception handling by the system.

EX1: =condition forthe exceptionto be called=
1. Step 1
2. Step 2

EX2 =condition forthe exceptionto be called=
1. Step 1

Formal 1ice race: axamnle

Goal Patron wishes to reserve a book using the online catalog
Primary actor Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end Book is reserved

Failure end Book is not reserved

Trigger Patron logs into system

Main success
scenario

|. Patron enters account and password

2. System verifies and logs patron in

3. System presents catalog with search screen

4. Patron enters book title

5. System finds match and presents location choices

6. Patron selects location and reserves book

7. System confirms reservation and re-presents catalog

Extensions (error |2a.Password is incorrect
scenarios) 2a.| System returns patron to login screen
2a.2 Patron backs out or tries again

5a. System cannot find book
5a.l ...

Variations 4. Patron enters author or subject
(alternative
scenarios)

Use case diagram vs. textual use

worved }

o« aband > >
PSS
wan

canaumed }

E&—=f

Chet

f.t:md;({If winewm adeaed }

f{f.md.
or vun:.
wan

Pay for
Wine

Name The Use Case name. Typically the name is of the format <action> + <object>.

D An identifierthatis unique to each Use Case.

Description A brief sentence that states what the userwants to be ableto do and what benefithe will derive.

Actors The type of user who interacts with the systemto accomplish the task. Actors are identified by role
name.

Organizational The value the organization expects to receive from having the functionality described. Ideally this

Benefits is a link directlyto a Business Objective.

Frequency of Use | Howoftenthe Use Caseis executed.

Triggers Concrete actions made bythe user withinthe systemto start the Use Case.

Preconditions Any states that the system mustbein or conditions that must be metbefore the Use Caseis
started.

Postconditions Any states that the system mustbein or conditions that must be met after the Use Caseis
completed successfully. These will be metif the Main Course or any Alternate Courses are
followed. Some Exceptions may resultinfailure to meetthe Postconditions.

Main Course The mostcommon path of interactions between the user andthe system.
1.Step 1
2.Step2

Alternate Courses | Alternate paths through the system.
AC1: <conditionforthe alternate to be called=
1. Step 1
2.5tep2
AC2: <condition forthe alternate to be called=
1.Step 1

Exceptions Exception handling bythe system.

EX1: <condition forthe exceptionto be called=
1.Step 1
2.Step2

EX2 =condition forthe exception to be called=
1. Step 1

Which one would you choose and why?

Informal use case: example

/Patron loses a book A

The library patron reports to the librarian that she
has lost a book. The librarian prints out the library
record and asks patron to speak with the head
librarian, who will arrange for the patron to pay a
book, and patron's record is updated as well. The

head librarian may authorize purchase of a
replacement book.

Informal use case with added
ﬁtgqgstéllr:%tron loses a book

1.

Although not ideal, it is almost always better than unstructured text.

You will probably use something in this general style
or a template for formal use cases.

Use case wrap up (time
permitting)

Which of the following requirements could be directly
represented as a use case?

» Special deals may not run longer than 6 months
* Customers only become preferred after 1year

* A customer has one and only one sales contact
 Database response time is less than 2 seconds
* Web site uptime requirement is 99.8%

* Number of simultaneous users will be 200 max

Requirements for a music player

Are these good requirements?

* Available on web and mobile

* Provide volume control

* Provide ability to flag favorites using a pulldown
menu

* Enable variable playback speed

* Propose songs using ChatGPT recommendations

* Propose songs based on customer selected
genres

» Written in JavaScript for extensibility and reliability

Pulling it all together

How much is enough?

You have to find a balance
« comprehensible vs. detailed
« graphics vs. explicit wording and tables
* short and timely vs. complete and late

Your balance may differ with each customer
depending on your relationship and flexibility

Try it with a use case for
your project

Goal
Actor
Main 1.
(succes 2. - Capture your thoughts
s) flow 3. -
4 We'll rotate today
' through groups to

discuss your use cases

69

Let’s double click on these other
flows

Variations and exceptions can be thought of as branches in

a use case useful for identifying other situations that need
to be handled

Variation (alternate) flows:

e These paths describe S RoTE
l-o . s® Search
extensions on the main
th eme software engineering

Current UW students, faCuity, aiiu

* Another way to meet the
goal

* Library search - Patron
enters an author or
subject or category 70

Let’s double click on these other
flows

Q O UW Libraries

Exception (error) flows: t® Search

* These paths describe
failure conditions

* What happens when
the goal is not achieved

Suggestions:

* Library search - no
book is found, system
times out

71

We can capture this in our

template

Goal

Actor

Main
(success
) flow

Variation
(alternat

Reserve a book in the library app

Library patron

1. Patron selects the search screen

2. System presents a search box (with
filters)

3. Patron types in the book title

4. System presents the books that
match and branch locations

5. Patron selects location and reserves

6. System confirms and represents
home page

(In step 3) 72
21 Patron tvnes in an author

Here’s another example —
ATM machine

Goal Withdraw money

Precondi | Authenticate

Actor Bank patron tion din
Main 1. System displays account types
(success 2. User chooses type
) flow 3. System asks for amount to withdraw

4. User enters amount

5. System debits user’s account and

dispenses money

6. User removes money

/. System prints and dispenses receipt
Exceptio (In step 5)
n 5.1.a System notifies that account funds are

flow insufficient .
5.1.b System displays current balance [and

Try it with a use case for
your project

Goal

Actor

Main (success)
Flow

Variation
(alternate) Flow

Exception
(error) Flow

- Capture your thoughts —
We’ll hear from another
few teams

74

Summing up use cases

* Focus on interaction
- Start with a request from an actor to the
system
- End with the production of all the answers
to the request

* Focus on essential behaviors, from actor’s
point of view
- Don't describe internal system activities
« Don'’t describe the GUI in detail

e Be concise, clear, and accessible to
non-programmers
- Easyto read 75

- CI |mm—\|ﬁ\:ﬂ+ﬁ PN ™ "™ VN TN NN

Some reference

Basic Use Case Template
(Cockburn)
https://canvas.uw.edu/co

urses/1680496/files/folde
r/UseCase%20Template?
preview=110607742

and/or

Use Cases (Usability.gov)

https://www.usability.go

v/how-to-and-tools/meth
ods/use-cases.html

Name The Use Case name. Typicallythe name is of the format <action= + <object=.

D An identifierthatis uniqueto each Use Case.

Description A brief sentencethat states what the userwants to be ableto do andwhatbenefithe will derive.

Actors The type of user who interacts with the systemto accomplishthe task. Actors are identified by role
name.

Organizational The value the organization expects to receive from having the functionalty described. deally this

Benefits is a link directlyto a Business Objective.

Frequency of Use | Howoftenthe Use Caseis executed.

| Triggers Concrete actions made bythe user withinthe systemto start the Use Case.

Preconditions Any states that the system mustbe in or conditions that must be met before the Use Case s
started.

Postconditions Any states that the system mustbein or conditions that must be met after the Use Case is
completed successfully. These will be metifthe Main Course or any Alternate Courses are
followed. Some Exceptions may resultin failure to meetthe Postconditions.

Main Course The mostcommon path of interactions between the user andthe system.
1.5tep 1
2. Step 2

Alternate Courses | Alternate paths throughthe system.
AC1: <condition forthe alternate to be called=
1.Step 1
2.5tep 2
AC2: <condition forthe alternate to be called=
1.5tep 1

Exceptions Exception handling by the system.

EX1: <condition forthe exceptionto be called=
1.5tep 1
2. 5tep 2

EX2 <condition forthe exceptionto be called=
1.5tep 1

76

https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://canvas.uw.edu/courses/1680496/files/folder/UseCase%20Template?preview=110607742
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html

Switching gears to another

technique ...

1.

What are techniques used to
specify requirements?
— Use cases

— Personas and user scenarios [we
are here

— Storyboarding

— Paper prototyping
— Prototyping

- UML

— Feature list

77

What to Consider When Writing Scenarios

Good scenarios are concise but answer the following key questions:

e Who is the user? Use the personas that have been developed to reflect
the real, major user groups coming to your site.

e Why does the user come to the site? Note what motivates the user to
come to the site and their expectations upon arrival, if any.

e What goals does he/she have? Through task analysis, you can better
understand the what the user wants on your site and therefore what the

site must have for them to leave satisfied.

78

00006

A persona is a description of a person who is
representative of a population using your system

Personas

Each persona may have a different perspective of
what they need

Example: Library catalog service (UW Libs)
Persona: Admin What might be
Persona: Librarian an analogy to a
Persona: Student personain a
Persona: Instructor use case?

79

Personas can be described
with cards

) Cards typically include:

! * Persona name and

— ¥ photo/image

—— = * A quote that captures
their goals and
motivations

« Demographics (group
they represent)

¢ Computer competence
and usage

* Wants and needs

* Frustrations and pain

points

KOO0 XXXX

Mockplus: User Persona Templates for Free Download

https://www.mockplus.com/blog/post/user-persona-template
https://www.mockplus.com/blog/post/user-persona-template

Lots of great examples on

the web

locality.”

Passionate Energetic ik
Adaptive Personable g :1 b

Resourceful Creative

-

Nick Jdme

Cycling
Trekking
Football
Nature

Mockplus: User Persona Templates for Free Download

“I'm looking for a medium
to connect with different
sportsmen in my

Sports / fitness /| mobile apps

Lazying around

Unproductive days
Not getting a break
Uncompetitiveness

Heather .
Wallace

Interests

81

0090
®ed
®ed

https://www.mockplus.com/blog/post/user-persona-template

User scenarios

For each persona you can define the requirements from
that person’s perspective through a user scenario

Example: As an instructor, | am constantly looking for
class resources that are relevant and up to date.
Moreover, when | find a resource, | want to know it’s
available free-of-charge for the students and comes
with online access.

Example: As a student, | want to be able to have the
search provide smart results, so that | don’t spend
hours wading through irrelevant matches. I'd like to
prioritize results that are timely, in-the-news,
most-popular, and most-referenced across the

Writing user scenarios

From:
https://www.usability.gov/how-to-and-tools/methods/sce

What to Consider When Writing Scenarios

Good scenarios are concise but answer the following key questions:

e Who is the user? Use the personas that have been developed to reflect the
real, major user groups coming to your site.

e Why does the user come to the site? Note what motivates the user to
come to the site and their expectations upon arrival, if any.

e What goals does he/she have? Through task analysis, you can better
understand the what the user wants on your site and therefore what the site

must have for them to leave satisfied.
Doesn’t this sound like use

cases!
persona -= actor

L]
CS ™~/ \NVYVN™N VLN - nf\\Al

https://www.usability.gov/how-to-and-tools/methods/scenarios.html
https://www.usability.gov/how-to-and-tools/methods/scenarios.html
https://www.usability.gov/how-to-and-tools/methods/scenarios.html

Personas and scenarios are
hugely valuable

* They tap into a fundamental human skill—the ability to
make predictions about how other people will react
based on mental models of them

* Enable us to capture inferences about the needs and
desires of audience segments

* Draw attention to “pain points” and opportunity for new
solutions

* Serve to communicate user characteristics and their
individual types of requirements in a compact and easily
understood way

84

