
The Joel Test
CSE 403 Software Engineering

What is the Joel Test?

The Joel Test is:
•A checklist of 12 best practices good software teams do
•A blog post 20 (!) years ago

• https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/

• https://dev.to/checkgit/the-joel-test-20-years-later-1kjk

• By Joel Spolsky (founder of Stack Overflow and Trello)
• These factors indicate a disciplined team that can consistently deliver

Score out of 12:
• 12 is good
• 11 is OK
• 10 or fewer is bad

3

So… Is the test still
relevant today?

https://dev.to/checkgit/the-joel-test-20-years-later-1kjk
https://dev.to/checkgit/the-joel-test-20-years-later-1kjk

Today’s Outline

1. Overview the 12 best practices [Time check – leave 10 min 2 and 3]

2. Discuss practices of some realistic software teams

3. Which team/company has the best chance of success?

4

Do you use source control?

What are the benefits?

• Allows multiple developers
• Keep project in consistent state
• Track changes and enable roll-back
• Manage multiple versions
• Save data in case of a disaster
• Authoritative source for “daily build”

19

Do you have a one-step build?

A single script that
• [does a full checkout from scratch]
• rebuilds every line of code
• makes the binary executable files in all versions, languages,

OSes, and #ifdef combinations
• [creates the installation package]
• [creates the final media - CDROM, web site, …]

All steps are automated and exercised regularly

20

Do you do a daily build and test?

Build the entire product every day and run a good test suite against the new version
● build from checked in sources
● automatic and frequent

Goal: discover problems early, and fix them before disaster strikes

Benefits
• Minimizes integration risk
• Reduces risk of low quality
• Supports easier defect diagnosis
• Improves morale - developers, managers, customers

21

Do you use a bug database?

You can’t keep the bug list in your head
• Especially with multiple developers and multiple customers
• Moreover, looking at the history of bugs can be insightful!

To characterize a bug consider:
• how to reproduce it
• expected behavior, actual behavior
• responsible party, status, priority

Best to use what is integrated with your code hosting
Alternatives: JIRA, Trac, Bugzilla, text file (☹)

22

Do you fix bugs before writing new code?

Why not fix them later?

● Familiar with the code now
● Harder to find (and fix) later
● Later code may depend on this code (try building on quicksand…)
● Bugs may reveal fundamental problems
● Leaving all bugs to the end will make it harder to understand and

keep the schedule

“Technical debt”

23

Do you have an up-to-date schedule?

Keeps expectations realistic
● For the team, customers, stakeholders

Allows for more accurate predictions
● Use experience to improve estimates

Helps prevent feature creep
● Don’t take on anything without checking the schedule first

24

Do you have a spec?

25

● Easier to fix problems at the design stage
● You know what you are trying to build

So do your teammates and customer
● More likely that you build the right thing

Pieces fit together
Customer is satisfied

● Conceptual integrity for your project
● The manual has similar benefits, & is part of the spec
● Undocumented code has no commercial value

Joel’s example: Netscape Navigator
Other examples: Viaweb (Paul Graham, Robert Morris), Vanu

Do you do hallway usability testing?

Grab someone in the hallway and make them use your code

Key idea: get feedback fast

A little feedback now ≫ lots of feedback later

You will get most of the valuable feedback from the first few users

26

The Joel Test – how does 403 stack up?

27

1. ✅ Do you use source control?
2. ✅ Can you make a build [+ release] in one step?
3. ✅ Do you make daily builds use CI (Continuous Integration)?
4. ✅ Do you have a bug database?
5. ❓ Do you fix bugs before writing new code?
6. ✅ Do you have an up-to-date schedule?
7. ✅ Do you have a spec?
8. ❓ Do programmers have quiet working conditions?
9. ❓ Do you use the best tools money can buy?

10. ✅ Do you have testers automated testing and monitor coverage?
11. ❓ Do new candidates write code during their interview?
12. ❓ Do you do hallway usability testing?

More advice: automation

• Automated testing

● Automate everything (e.g., formatting)
Nothing that requires human interaction is acceptable

● Use automated tools: linting, verification

28

Other advice

29

Let’s try out the test

1. 8 teams/companies

2. Hypothetical but plausible – largely based on experience

3. Only some Joel Test questions are highlighted – assume others are
covered adequately

4. Assess the scenarios as we go
• How successful will they be in their scenario with their practices?
• How much would you like to work in such an environment?

30

The Startup Incubator team

32

You work for an early-stage tech startup in an incubator.
Things move fast around here.

(2.) One-step builds: Your team uses GitHub's continuous
integration tools.

(8.) Loud conditions: You work in an incubator - so you share
your cubicle with three other people, and you share your open
floor with other companies. It can get pretty loud on a regular
basis.

(9.) On a shoestring budget: Everyone works on their own
laptop, partially from home (different OSes, etc), and you
mainly avoid paid software – compatibility issues and some
wasted time result.

(12.) Hallway usability testing: As a team you’re constantly
pinging ideas back and forth and demoing new features. As a
result your UI is great, and you tend to only build useful
features.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you use CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you use automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

The Not-For-Profit Company team

33

Your team works for a mission-driven not-for-profit. You care
a lot about the company, really get along with your
co-worker, but some of the engineering practices are …
questionable.

(1.) No source "control“: Although you have your code in
BitBucket, there is not a good process/effort to integrate
upgrades from collaborators.

(5.) Lower bug priority: The company has little resources to
keep up with new requirements. Bugs are only tackled only
when somethings breaks really bad.

(8.) Quiet work conditions: you don’t have offices, but your
working spaces are fairly quiet, not like the cacophony of an
incubator.

(12.) Hallway testing: you also do a good deal of hallway
usability testing.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Big Tech Company team

34

You work on a team at one of the big tech companies.
(1.) Source control: not only do you use source control,
your company has its own suite of internal tools for code
reviews, etc., increasing productivity a lot.
(2.) No one-step build: you cannot make the build in one
step - in fact you have a “build manager” rotation which
consumes an engineer’s whole week.
(8.) Open floor plan: you have your own desk, thankfully,
but it's on a floor with a few dozen desks and it's often a
little busy.
(11.) Coding in interviews: coding is the biggest part of
your company’s notoriously difficult interview process. As
a result, not only can you rely on your coworkers to be
technically solid, you frequently learn from them.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Investment Firm team

35

You work for a big bank or investment firm. Your team
does in-house modeling and tooling for its investors.

(7.) No spec: leadership is pretty unclear on what they
want you to do, and the software engineers hate writing
documentation, so you frustratingly spend more time than
you’d like working on projects that are ultimately
dropped, or dealing with requirement churn.

(8). Quiet work space: everyone has an office. In fact,
maybe you have too much time away from your team.

(9.) Best tools money can buy: you have your own office
and nice hardware. Cost is not a barrier to access any
software or computing resources.

(10.) Do you have testers: Yes, but they are mostly focused
on higher level issues, like the results of analysis. Tests
aren’t automated.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Enterprise Company team

You work for a big enterprise software company. You have quarterly
scheduled build releases, follow the Waterfall method, all that.

(3.) No daily builds: Every couple of weeks your team gets blocked
on the build being broken by some bug a dozen commits ago. You
can imagine a lot of time is lost at the whole company this way…
(6.) Up-to-date schedule: thanks to the company’s structured
releases, your team always knows what to have done, when. Other
teams can count on yours to always hit your deadlines.
(7.) There are specs: Your team is careful to write specs.
(9.) Best tools available: Not really. Because of the companies'
partnerships, you have to stick with the provided tools and it is really
hard to try new ones.

36

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Trendy Startup team

You work for a trendy startup working on
something to do with deep learning, or maybe
blockchain.

(2.) One-click builds and (3.) at-least daily builds:
both use standard continuous integration, resulting
in little to no time wasted on fixing broken builds.

(5.) Your team doesn’t prioritize fixing bugs and
regularly (6.) doesn’t stick to a set schedule. You’re
frequently meeting with and demoing the product
for series A investors. Management prioritizes new
feature launches ahead of fixing known bugs.known
bugs.

37

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Research Lab team
Your team works for a government-contracted research lab.
Your engineering tasks encompass things like big-data
biology, rocket engine simulations, etc.

(4.) No bug database - Your company’s engineering developed
to supplement code written by a principal researcher without
software training, and not tracking bugs is one result of the lack
of formality. You frequently encounter buggy code but have
difficulty institutionally learning from any of these mistakes.

(7.) Your team uses specs, which helps give direction to the
team’s efforts and avoid wasting time and (8.) things are pretty
quiet - you work in a lab, and there aren’t many distractions.

(11.) No coding in interviews - the company prioritizes other
technical skills, so while some of your coworkers are very
experienced engineers, others on your team (who write code)
are researchers without a lot of programming experience.

38

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Big Non-Tech Company team

You work as part of the software team for a big non-tech
company (like a hospital, a retail store chain, etc.)
You have quarterly deadlines for projects, and generally
follow a more traditional business schedule.

(3) No daily builds: you’re on quarterly cycles so you don’t
test the build on any regular schedule.

(7.) Your team works from a spec.

(8.) Has your own offices.

(10) No automated testing: Your company is not software
focused so you don’t have dedicated testers - but you do
have stringent correctness requirements. As a result you
have to spend a lot of time manually testing new features.

39

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

Wrapup

40

1. Are these tests still valid?
2. Which are most/least important?
3. Are some situational?

The Joel Test

1. Do you use source control?
2. Can you make a build in one step?
3. Do you use CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

