CSE 403

Software Engineering

Course introduction

Today

e The CSE 403 team
e Logistics and resources

e \What is Software Engineering
e (Course overview and expectations

The CSE 403 team

Instructor

e Michael Ernst; office hours: after class and by appointment
e Best email: cse403-staff@cs; you may also use mernst@cs.

TAs

Saket Gollapudi
Jason Hoffman
Allan Ji

Melanie Kneitmix
Mitchell Levy
Mingyuan Zhong

Your TA has multiple roles:

e \enture capitalist who expects results

e Manager who helps when you have difficulty
e Grader

5 meetings per week

e Lectures: MWF; Friday is often an in-class activity
e Team meeting: Tuesday

e Meet with your TA: Thursday

The first week and a half or so have a different schedule.

This Thursday: work on project proposal with your assigned partner.

Logistics: resources

e Course website:
https://homes.cs.washington.edu/~rjust/courses/CSE403 (cs.uw.edu/403)

All relevant information is on the website, or linked from it.

e Submit assignments via Canvas:
https://canvas.uw.edu

https://homes.cs.washington.edu/~rjust/courses/CSE403
https://cs.uw.edu/403
https://canvas.uw.edu

Today

e The CSE 403 team

e Logistics and Background

[o What is Software Engineering }
e (Course overview and expectations

What is Software Engineering? f?

e Developing in an IDE
and software ecosystem?

FEATURE

’ ==y
w2}
fo; 705 h N
7 24
112019
®ce - Closure-9 — riust@gator: fmp/Closure-9 — -bash —117x47
- - = J/inis.oh BUG
&5 wget _nv SEVOSUITE_URL/SEVOSUITE_RT_JAR
et = = the supported version of Evsuite
1n -st & _aam spIR_L1n_ jar
|Erigerape Rr_aax $DIR 115 ar
#

Deploying and running
a software system?

e Empirically evaluating a software system?

W

e \Writing (design) docs?

What is Software Engineering? f?

e Developing in an IDE
and software ecosystem?

FEATURE

. s
2
0, 20, N -
hl # %
eoce _ = Closure-9 — rjust@gator: /tmp/Closure-8 — -bash — 117x47
- - = BUG
CE vout—n SEVOSUETE R/ AEVOSUETE NS AR
‘

Deploying and running
a software system?

e Empirically evaluating a software system?

W

e \Writing (design) docs?

All of the above and much more!

Software Engineering is more than writing code

Software Engineering is the complete process of
specifying,

requirements engineering, specifications, documentation
designing, software architecture and design, Ul
developing, programming (just one of many important tasks)
analyzing,
testing, debugging, linting, verification, performance engineering
deploying,
DevOps, Cl, packaging, operation, remote diagnostics,
documentation, websites

& maintaining refactoring, extensions, adaptation, issue tracking
a software system.

Why is Software Engineering important?

Software is everywhere!

BEE
NEWS

News Front Page
RS

Last Updated: Friday, 15 August, 2003, 08:43 GMT 09:43 UK
E-mail this to a friend & Printable version

Blackouts cause N America chaos

Facebook Patches Access Token Leak

Users should change thelr passwords to mitigate threats posed by the
released a system software accldental leak of perhaps milllons of account Identity detalls.

The "Heartbleed' security flaw exmownas thegorotair
that affects most of the Internet

ITEX

Why is Software Engineering important?

Software is everywhere!

B|B|C]
NEWS
News Front Page

2 E-mail this to a friend & Printable version

¥
. (==xl’ Blackouts cause N America chaos
aii LTI
Afri
gl

Last Updated: Friday, 15 August, 2003, 08:43 GMT 09:43 UK

Unfortunately, WhatsApp has
stopped.

es Access Token Leak

elr passwords to mitigate threats posed by the
Of perhaps millllons of account Identity detalls.

The '"Heartbleed' security flaw i~
that affects most of the Internet

ITEX

Summary: Software Engineering

What is Software Engineering?
e The complete process of specifying, designing,
developing, analyzing, and maintaining a software system.

Why is it important?

e Decomposes a complex engineering problem.
Organizes processes and effort.

Improves software reliability.

Improves developer productivity.

Leads to a successful product!

Both technical and management contributions are
essential.

The Role of Software Engineering in Practice

(Engineering workflow at Microsoft, Big Code summit 2019)

The Role of Software Engineering in Practice

Intro-level
courses focus on

the inner loop.

(Engineering workflow at Microsoft, Big Code summit 2019)

CSE 403 largely focuses on the outer loop.

What can you learn in CSE 403

* Learn best software development best practices

» Understand how software is produced - from
conception to continuous development and release

* Develop skills to effectively collaborate with others
towards a common delivery goal

* Experience the responsibilities, issues and tradeoffs
involved in making decisions as software engineers

Much of the above is grounded by working with a
team to incrementally deliver a real software
product/service

Today

e The CSE 403 team

e Logistics and Background

e \What is Software Engineering

[o Course overview and expectations }

Course overview: grad

Course material
Date Topic A
01/02 No class (holiday)
01/03 No section
01/04 Introduction Project proposal (due 01/09)
01/05 Project proposals
01/06 The Joel Test Reading 1 and 2
01/09 Software development life cycle
01/10 Project proposals
01/11 Requirements and Use cases Requirements and policies (due 01/17)
01/12 Project meeting
01/13 Teams and Scrum
01/16 No class (holiday)
01/17 Team meeting
01/18 Version control and Git Git setup (due 01/24)
01/19 Project meeting
01/20 In-class exercise (Git) Canvas
01/23 Data modelling
01/24 Team meeting
01/25 Architecture Architecture and Design (due 01/31)
01/26 Project meeting
01/27 Design Reading (Sections 1-6)
01/30 Build systems
01/31 Team meeting
02001 Testing and C1 Sl Testing and CI (due 02/07)
02/02 Project meeting
02/03 Code review Tutorial video
02/06 Coverage-based testing Reading
02/07 Team meeting
02/08 Mutation-based testing Reading 1 and 2 Beta release (due 02/14)
02/09 Project meeting
02/10 In-class exercise (Code defenders) Canvas
02/13 Hack day
02/14 Team meeting
02/15 Reflection Implementation and Documentation (due 02/21)
02/16 Project meeting
02/17 In-class exercise (Testing) Canvas
02/20 No class (holiday)
02/21 Team meeting
02/22 Debugging Reading Peer review (due 02/28)
02/23 Project meeting
02/24 In-class exercise (Debugging) Canvas
02/27 Program analysis
02/28 Team meeting
03/01 Fault localization
03/02 Project meeting
03/03 In-class exercise (Fault localization) Canvas
03/06 Hack day
03/07 Team meeting
03/08 Advanced program analysis Reflection (due 03/14)
03/09 Project meeting
03/10 Optional in-class exercise Canvas

ing
Grading
55%: Course project

70% project milestones
30% final project review

20%: In-class exercises and
individual assignments

15%: Midterm exam

10%: Participation

Engagement in project meetings

In-class discussions and activities

(polls, small-group activities, etc.)
Slack contributions

No final exam

[
O

O

O

O

O

Course overview: workl

Course material

Date

01/02
01/03
01/04
01/05
01/06

01/09
01/10
01/11
01/12
01/13

01/16
01/17
01/18
01/19
01/20

01/23
01/24
01/25
01/26
0127

01/30
01/31

02/01

02/02
02/03

02/06
02/07
02/08
02/09
02/10

02/13
02/14
02/15
02/16
02/17

0220
02/21
02/22
02/23
02/24

0227
02/28
03/01
03/02
03/03

03/06
03/07
03/08
03/09
03/10

Topic

No class (holiday)
No section
Introduction
Project proposals
The Joel Test

Software development life cycle
Project proposals

Requirements and Use cases
Project meeting

Teams and Scrum

No class (holiday)
Team meeting

Version control and Git
Project meeting
In-class exercise (Git)

Data modelling
Team meeting
Architecture
Project meeting
Design

Build systems
Team meeting

Testing and CI

Project meeting
Code review

Coverage-based testing

Team meeting

Mutation-based testing

Project meeting

In-class exercise (Code defenders)

Hack day

Team meeting

Reflection

Project meeting

In-class exercise (Testing)

No class (holiday)

Team meeting

Debugging

Project meeting

In-class exercise (Debugging)

Program analysis
Team meeting
Fault localization
Project meeting

In-class exercise (Fault localization)

Hack day

Team meeting

Advanced program analysis
Project meeting

Optional in-class exercise

Project proposal (due 01/09)

Reading 1 and 2

Canvas

Reading (Sections 1-6)

Ant+GH Actions
Gradle+Travis CI

Tutorial video
Reading
Reading 1 and 2

Canvas

Canvas

Reading

Canvas

Canvas

Canvas

Requirements and policies (due 01/17)

Git setup (due 01/24)

Architecture and Design (due 01/31)

Testing and CI (due 02/07)

Beta release (due 02/14)

Implementation and Documentation (due 02/21)

Peer review (due 02/28)

Final release (due 03/07)

Reflection (due 03/14)

oad

Grading
e 55%: Course project
e 20%: In-class exercises and
individual assignments
e 15%: Mid-term exam
e 10%: Participation

Workload
e One project assignment each week

Course overview: workl

Course material

Date Topic
01/02 No class (holiday)
01/03 No section
01/04 Introduction
01/05 Project proposals
01/06 The Joel Test Reading 1 and 2
01/09 Software development life cycle
01/10 Project proposals
01/11 Requirements and Use cases
01/12 Project meeting
01/13 Teams and Scrum
01/16 No class (holiday)
01/17 Team meeting
01/18 Version control and Git
”
01/20 In-class exercise (Git) l Canvas
01/23 Data modelling
01/24 Team meeting
01/25 Architecture
01/26 Project meeting
01/27 Design Reading (Sections 1-6)
01/30 Build systems
01/31 Team meeting
q Ant+GH Actions
Q20T stngand C1 Gradle+Travis CI
02/02 Project meeting
02/03 Code review Tutorial video
02/06 Coverage-based testing Reading
02/07 Team meeting
02/08 Mutation-based testing Reading 1 and 2
"

02/10 In-class exercise (Code defenders) l Canvas
02/13 Hack day
02/14 Team meeting
02/15 Reflection
02/17 In-class exercise (Testing) l Canvas
02/20 No class (holiday)
02/21 Team meeting
02/22 Debugging Reading

2 Besi s
02/24 In-class exercise (Debugging) l Canvas
02/27 Program analysis
02/28 Team meeting
03/01 Fault localization

S .

03/03 In-class exercise (Fault localizationl Canvas
03/06 Hack day
03/07 Team meeting
03/08 Advanced program analysis
03/09 Project meeting
03/10 Optional in-class exercise Canvas

Project proposal (due 01/09)

Requirements and policies (due 01/17)

Git setup (due 01/24)

Architecture and Design (due 01/31)

Testing and CI (due 02/07)

Beta release (due 02/14)

Implementation and Documentation (due 02/21)

Peer review (due 02/28)

Final release (due 03/07)

Reflection (due 03/14)

oad

Grading
e 55%: Course project
e 20%: In-class exercises and
individual assignments
e 15%: Mid-term exam
e 10%: Participation

Workload
e One project assignment each week
e 5 (+1 optional) in-class exercises

Course

overview: workl

Course material
Date Topic

01/02 No class (holiday)
01/03 No section

01/04 Introduction

01/05 Project proposals
01/06 The Joel Test

01/09 Software development life cycle
01/10 Project proposals

01/11 Requirements and Use cases
01/12 Project meeting

01/13 Teams and Scrum

01/16 No class (holiday)
01/17 Team meeting

01/18 Version control and Git
01/19 Project meeting

01/20 In-class exercise (Git)

01/23 Data modelling
01/24 Team meeting
01/25 Architecture
01/26 Project meeting
01/27 Design

01/30 Build systems
01/31 Team meeting

02/01 Testing and CI

02/02 Project meeting
02/03 Code review

02/06 Coverage-based testing

02/07 Team meeting

02/08 Mutation-based testing

02/09 Project meeting

02/10 In-class exercise (Code defenders)

l02/l 3 Hack day

02/15 Reflection
02/16 Project meeting
02/17 In-class exercise (Testing)

02/20 No class (holiday)

02/21 Team meeting

02/22 Debugging

02/23 Project meeting

02/24 In-class exercise (Debugging)

02/27 Program analysis

02/28 Team meeting

03/01 Fault localization

03/02 Project meeting

03/03 In-class exercise (Fault localization)

l03/06 Hack day

03/08 Advanced program analysis
03/09 Project meeting
03/10 Optional in-class exercise

Reading 1 and 2

Canvas

Reading (Sections 1-6)

Ant+GH Actions
Gradle+Travis CI

Tutorial video
Reading
Reading 1 and 2

Canvas

Canvas

Reading

Canvas

Canvas

Canvas

Project proposal (due 01/09)

Requirements and policies (due 01/17)

Git setup (due 01/24)

Architecture and Design (due 01/31)

Testing and CI (due 02/07)

Beta release (due 02/14)]

Implementation and Documentation (due 02/21)

Peer review (due 02/28)

Final release (due 03/07)]

Reflection (due 03/14)

oad

Grading
e 55%: Course project
e 20%: In-class exercises and
individual assignments
e 15%: Mid-term exam
e 10%: Participation

Workload
e One project assignment each week
e 5 (+1 optional) in-class exercises
e Extra time allocated for crunch time

Course overview: topics

Course material

e e . e Software processes, requirements,

01/02 No class (holiday)
01/03 No section

01/04 Introduction Project proposal (due 01/09) H H H
e e dandad specirication

01/06 The Joel Test Reading 1 and 2

01109 Softare development i yce o Different software development processes.

01/10 Project proposals
01/11 Requirements and Use cases Requirements and policies (due 01/17)

otz g o Precise writing (requirements and
A

Teams and Scrum

v
01/16 No class (holiday) f t)
01/17 Team meeting SpeCI ICa IOnS .
01/18 Version control and Git Git setup (due 01/24)
01/19 Project meeting
01/20 In-class exercise (Git) Canvas

01/23 Data modelling
01/24 Team meeting

01/25 Architecture Architecture and Design (due 01/31)
01/26 Project meeting
01/27 Design Reading (Sections 1-6)

01/30 Build systems
01/31 Team meeting
. Ant+GH Actions o
02/01 Testing and CI Gradle+Travis CI Testing and CI (due 02/07)

02/02 Project meeting

02/03 Code review Tutorial video

02/06 Coverage-based testing Reading

02/07 Team meeting

02/08 Mutation-based testing Reading 1 and 2 Beta release (due 02/14)

02/09 Project meeting
02/10 In-class exercise (Code defenders) Canvas

02/13 Hack day
02/14 Team meeting

02/15 Reflection Implementation and Documentation (due 02/21)
02/16 Project meeting
02/17 In-class exercise (Testing) Canvas

02/20 No class (holiday)
02/21 Team meeting

02/22 Debugging Reading Peer review (due 02/28)
02/23 Project meeting
02/24 In-class exercise (Debugging) Canvas

02/27 Program analysis

02/28 Team meeting

03/01 Fault localization Final release (due 03/07)
03/02 Project meeting

03/03 In-class exercise (Fault localization) Canvas

03/06 Hack day

03/07 Team meeting

03/08 Advanced program analysis Reflection (due 03/14)
03/09 Project meeting

03/10 Optional in-class exercise Canvas

Course

overview: topics

Course material
Date Topic

01/02 No class (holiday)
01/03 No section

01/04 Introduction

01/05 Project proposals
01/06 The Joel Test

01/09 Software development life cycle
01/10 Project proposals

01/11 Requirements and Use cases
01/12 Project meeting

01/13 Teams and Scrum

Reading 1 and 2

Project proposal (due 01/09)

Requirements and policies (due 01/17)

61/16 No class (holiday)
01/17 Team meeting
01/18 Version control and Git
01/19 Project meeting
01/20 In-class exercise (Git)

01/23 Data modelling
01/24 Team meeting
01/25 Architecture
01/26 Project meeting
01/27 Design

01/30 Build systems
01/31 Team meeting
02/01 Testing and CI

02/02 Project meeting
Q2/03 Code review

Canvas

Reading (Sections 1-6)

Ant+GH Actions
Gradle+Travis CI

Tutorial video

Git setup (due 01/24)

Architecture and Design (due 01/31)

Testing and CI (due 02/07)

02/06 Coverage-based testing

02/07 Team meeting

02/08 Mutation-based testing

02/09 Project meeting

02/10 In-class exercise (Code defenders)

02/13 Hack day

02/14 Team meeting

02/15 Reflection

02/16 Project meeting

02/17 In-class exercise (Testing)

02/20 No class (holiday)

02/21 Team meeting

02/22 Debugging

02/23 Project meeting

02/24 In-class exercise (Debugging)

02/27 Program analysis

02/28 Team meeting

03/01 Fault localization

03/02 Project meeting

03/03 In-class exercise (Fault localization)

03/06 Hack day

03/07 Team meeting

03/08 Advanced program analysis
03/09 Project meeting

03/10 Optional in-class exercise

Reading

Reading 1 and 2

Canvas

Canvas

Reading

Canvas

Canvas

Canvas

Beta release (due 02/14)

Implementation and Documentation (due 02/21)

Peer review (due 02/28)

Final release (due 03/07)

Reflection (due 03/14)

Software processes, requirements,

and specification
o Different software development processes.
o Precise writing (requirements and
specifications).
Software development
o Decompose a complex problem and build
abstractions.
o Improve your coding skills.
o Effectively use version control, build systems,
and code review.
o Continuous integration (ClI).

Course

overview: topics

Course material
Date Topic

01/02 No class (holiday)
01/03 No section

01/04 Introduction

01/05 Project proposals
01/06 The Joel Test

01/09 Software development life cycle
01/10 Project proposals

01/11 Requirements and Use cases
01/12 Project meeting

01/13 Teams and Scrum

01/16 No class (holiday)
01/17 Team meeting

01/18 Version control and Git
01/19 Project meeting

01/20 In-class exercise (Git)

01/23 Data modelling
01/24 Team meeting
01/25 Architecture
01/26 Project meeting
01/27 Design

01/30 Build systems
01/31 Team meeting
02/01 Testing and CI

02/02 Project meeting
02/03 Code review

Reading 1 and 2

Canvas

Reading (Sections 1-6)

Ant+GH Actions
Gradle+Travis CI

Tutorial video

Project proposal (due 01/09)

Requirements and policies (due 01/17)

Git setup (due 01/24)

Architecture and Design (due 01/31)

Testing and CI (due 02/07)

/06 ~ Coverage-based testing
02/07 Team meeting
02/08 Mutation-based testing

02/09 Project meeting
02/10 In-class exercise (Code defenders)

02/13 Hack day

02/14 Team meeting

02/15 Reflection

02/16 Project meeting

02/17 In-class exercise (Testing)

02/20 No class (holiday)

02/21 Team meeting

02/22 Debugging

02/23 Project meeting

02/24 In-class exercise (Debugging)

02/27 Program analysis

02/28 Team meeting

03/01 Fault localization

03/02 Project meeting

03/03 In-class exercise (Fault localization)

03/06 Hack day
03/07 Team meeting
03/08 Advanced program analysis

03/09 Project meeting
\03/ 10 Optional in-class exercise

Reading

Reading 1 and 2

Canvas

Canvas

Reading

Canvas

Canvas

Canvas

~

Beta release (due 02/14)

Implementation and Documentation (due 02/21)

Peer review (due 02/28)

Final release (due 03/07)

Reflection (due 03/14)

J

Software processes, requirements,

and specification
o Different software development processes.
o Precise writing (requirements and
specifications).
Software development
o Decompose a complex problem and build
abstractions.
o Improve your coding skills.
o Effectively use version control, build systems,
and code review.
o Continuous integration (ClI).

Software testing and debugging
o Write effective (unit) tests.
o Hands-on experience, using testing and
debugging techniques.
o (Advanced) program analysis.

Course overview: course project

Course material

Date

01/02
01/03
01/04
01/05
01/06

01/09
01/10
01/11
01/12
01/13

01/16
01/17
01/18
01/19
01/20

01/23
01/24
01/25
01/26
0127

01/30
01/31

02/01

02/02
02/03

02/06
02/07
02/08
02/09
02/10

02/13
02/14
02/15
02/16
02/17

0220
02/21
02/22
02/23
02/24

0227
02/28
03/01
03/02
03/03

03/06
03/07
03/08
03/09
03/10

Topic

No class (holiday)
No section
Introduction
Project proposals
The Joel Test

Software development life cycle
Project proposals

Requirements and Use cases
Project meeting

Teams and Scrum

No class (holiday)
Team meeting

Version control and Git
Project meeting
In-class exercise (Git)

Data modelling
Team meeting
Architecture
Project meeting
Design

Build systems
Team meeting

Testing and CI

Project meeting
Code review

Coverage-based testing

Team meeting

Mutation-based testing

Project meeting

In-class exercise (Code defenders)

Hack day

Team meeting

Reflection

Project meeting

In-class exercise (Testing)

No class (holiday)

Team meeting

Debugging

Project meeting

In-class exercise (Debugging)

Program analysis

Team meeting

Fault localization

Project meeting

In-class exercise (Fault localization)

Hack day

Team meeting

Advanced program analysis
Project meeting

Optional in-class exercise

Reading 1 and 2

Canvas

Reading (Sections 1-6)

Ant+GH Actions
Gradle+Travis CI

Tutorial video

Reading

Reading 1 and 2

Canvas

Canvas

Reading

Canvas

Canvas

Canvas

Project proposal (due 01/09)

Requirements and policies (due 01/17)

Git setup (due 01/24)

Architecture and Design (due 01/31)

Testing and CI (due 02/07)

Beta release (due 02/14)

Implementation and Documentation (due 02/21)

Peer review (due 02/28)

Final release (due 03/07)

Reflection (due 03/14)

()

\ J

Software processes, requirements,

and specification
o Different software development processes.
o Precise writing (requirements and
specifications).
Software development
o Decompose a complex problem and build
abstractions.
o Improve your coding skills.
o Effectively use version control, build systems,
and code review.
o Continuous integration (ClI).

Software testing and debugging

o Write effective (unit) tests.

o Hands-on experience, using testing and
debugging techniques.

o (Advanced) program analysis.

Course project
o Apply all of the above in a group project.

Course project overview

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project.html

Course project proposals

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/01_proposal.html

Course project categories
Create a new program/app/feature that scratches your itch.

Example categories

e Productivity and convenience apps
Optimization problems and data science
Gaming and making

Extensions to open-source software
Software Engineering research (prototypes)

Example projects from 23au

IDE plugin to add print statements for logging.
It uses Al to determine what to print to explain the code.

Visualization of state representatives, over time, and how
they voted on issues.

A Minecraft extension.

CSE 403: mostly type Il fun

o~

p
THE FUN SCALE

NOT AUL OUTDOOR.FUN iS CREATED EQUAL

el (TRl) TYPEINL
FUN FUN FUN

FUN T0 DO WETS ABIT To DO NOT FUN To DO
FUN TO REMEMBER. | BUT FUN iN RETROSPECT | NOT FUN iN RETROSPET

S\t
Bl

WANT TOKEEPBGNG | MOST FULFILLING N | ...BUT Mawes A
K BDCK_FOR. MORE. Quau:ma RUN GRENT STORY
o

Sweet spot for teaching]

Expectations

e Ability to program (in any programming language).
e Active participation in discussions.

e Teamwork and communication.

e Reflect on and improve your submissions.

e (o beyond adequate.

CSE 403: challenges for students

Team work
e Effective communication and coordination
e Different backgrounds, skills, and incentives

Complexity
e Tooling and technology stacks
e Scale of code base

Uncertainty
e No simple check-box grading
e Trade-offs, decisions, and justifications

CSE 403: challenges for staff

In-person vs. online education

2020: “Transition plan”

2020
ot e

Total Crap. Would
Not Recommend.

2022: “How does this work?”

Enroliment Time
e 2020: 40 students (2 TAs) e Project duration: 9 weeks
e 2021:. 85 students (5 TAs) e Lecture time: 50 minutes
e 2022: 110 students (6 TAs) e Quick turnaround times
o 2023: 82 students (5 TAs)

CSE 403: challenges for students and staff

The Week-1 rush Lecture time (12:30)

What's next?

e Thu: Work on project proposal (pre-assigned groups)

e Fri: The Joel Test (basic software engineering processes)

