
CSE 403
Software Engineering

Course introduction

Today

● The CSE 403 team
● Logistics and resources
● What is Software Engineering
● Course overview and expectations

The CSE 403 team
Instructor
● Michael Ernst; office hours: after class and by appointment
● Best email: cse403-staff@cs; you may also use mernst@cs.

TAs
● Saket Gollapudi
● Jason Hoffman
● Allan Ji
● Melanie Kneitmix
● Mitchell Levy
● Mingyuan Zhong

Your TA has multiple roles:
● Venture capitalist who expects results
● Manager who helps when you have difficulty
● Grader

5 meetings per week

● Lectures: MWF; Friday is often an in-class activity

● Team meeting: Tuesday

● Meet with your TA: Thursday

The first week and a half or so have a different schedule.

This Thursday: work on project proposal with your assigned partner.

Logistics: resources

● Course website:
https://homes.cs.washington.edu/~rjust/courses/CSE403 (cs.uw.edu/403)

All relevant information is on the website, or linked from it.

● Submit assignments via Canvas:
https://canvas.uw.edu

https://homes.cs.washington.edu/~rjust/courses/CSE403
https://cs.uw.edu/403
https://canvas.uw.edu

Today

● The CSE 403 team
● Logistics and Background
● What is Software Engineering
● Course overview and expectations

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Debugging and maintaining a software system?

● Deploying and running
a software system?

● Empirically evaluating a software system?

● Writing (design) docs?

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Debugging and maintaining a software system?

● Deploying and running
a software system?

● Empirically evaluating a software system?

● Writing (design) docs?

All of the above and much more!

Software Engineering is more than writing code

Software Engineering is the complete process of
specifying,

designing,
developing,
analyzing,

deploying,

& maintaining
a software system.

requirements engineering, specifications, documentation
software architecture and design, UI
programming (just one of many important tasks)

testing, debugging, linting, verification, performance engineering

DevOps, CI, packaging, operation, remote diagnostics,
documentation, websites

refactoring, extensions, adaptation, issue tracking

Why is Software Engineering important?

Software is everywhere!

Why is Software Engineering important?

Software is everywhere!

Summary: Software Engineering

What is Software Engineering?
● The complete process of specifying, designing,

developing, analyzing, and maintaining a software system.

Why is it important?
● Decomposes a complex engineering problem.
● Organizes processes and effort.
● Improves software reliability.
● Improves developer productivity.
● Leads to a successful product!

Both technical and management contributions are
essential.

(Engineering workflow at Microsoft, Big Code summit 2019)

The Role of Software Engineering in Practice

(Engineering workflow at Microsoft, Big Code summit 2019)

The Role of Software Engineering in Practice

Intro-level
courses focus on

the inner loop.

CSE 403 largely focuses on the outer loop.

What can you learn in CSE 403

• Learn best software development best practices

• Understand how software is produced – from
conception to continuous development and release

• Develop skills to effectively collaborate with others
towards a common delivery goal

• Experience the responsibilities, issues and tradeoffs
involved in making decisions as software engineers

Much of the above is grounded by working with a
team to incrementally deliver a real software

product/service

Today

● The CSE 403 team
● Logistics and Background
● What is Software Engineering
● Course overview and expectations

Course overview: grading
Grading
● 55%: Course project

○ 70% project milestones
○ 30% final project review

● 20%: In-class exercises and
 individual assignments

● 15%: Midterm exam
● 10%: Participation

○ Engagement in project meetings
○ In-class discussions and activities

(polls, small-group activities, etc.)
○ Slack contributions

● No final exam

Course overview: workload
Grading
● 55%: Course project
● 20%: In-class exercises and

 individual assignments
● 15%: Mid-term exam
● 10%: Participation

Workload
● One project assignment each week

Course overview: workload
Grading
● 55%: Course project
● 20%: In-class exercises and

 individual assignments
● 15%: Mid-term exam
● 10%: Participation

Workload
● One project assignment each week
● 5 (+1 optional) in-class exercises

Course overview: workload
Grading
● 55%: Course project
● 20%: In-class exercises and

 individual assignments
● 15%: Mid-term exam
● 10%: Participation

Workload
● One project assignment each week
● 5 (+1 optional) in-class exercises
● Extra time allocated for crunch time

Course overview: topics
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).

Course overview: topics
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).
● Software development

○ Decompose a complex problem and build
abstractions.

○ Improve your coding skills.
○ Effectively use version control, build systems,

and code review.
○ Continuous integration (CI).

Course overview: topics
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).
● Software development

○ Decompose a complex problem and build
abstractions.

○ Improve your coding skills.
○ Effectively use version control, build systems,

and code review.
○ Continuous integration (CI).

● Software testing and debugging
○ Write effective (unit) tests.
○ Hands-on experience, using testing and

debugging techniques.
○ (Advanced) program analysis.

Course overview: course project
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).
● Software development

○ Decompose a complex problem and build
abstractions.

○ Improve your coding skills.
○ Effectively use version control, build systems,

and code review.
○ Continuous integration (CI).

● Software testing and debugging
○ Write effective (unit) tests.
○ Hands-on experience, using testing and

debugging techniques.
○ (Advanced) program analysis.

● Course project
○ Apply all of the above in a group project.

Course project overview

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project.html

Course project proposals

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/01_proposal.html

Course project categories

Create a new program/app/feature that scratches your itch.

Example categories
● Productivity and convenience apps
● Optimization problems and data science
● Gaming and making
● Extensions to open-source software
● Software Engineering research (prototypes)

Example projects from 23au

IDE plugin to add print statements for logging.
It uses AI to determine what to print to explain the code.

Visualization of state representatives, over time, and how
they voted on issues.

A Minecraft extension.

CSE 403: mostly type II fun

Sweet spot for teaching

Expectations

● Ability to program (in any programming language).

● Active participation in discussions.

● Teamwork and communication.

● Reflect on and improve your submissions.

● Go beyond adequate.

CSE 403: challenges for students

Team work
● Effective communication and coordination
● Different backgrounds, skills, and incentives

Complexity
● Tooling and technology stacks
● Scale of code base

Uncertainty
● No simple check-box grading
● Trade-offs, decisions, and justifications

CSE 403: challenges for staff

2020: “Transition plan”

2022: “How does this work?”

Enrollment
● 2020: 40 students (2 TAs)
● 2021: 85 students (5 TAs)
● 2022: 110 students (6 TAs)
● 2023: 82 students (5 TAs)

In-person vs. online education

Time
● Project duration: 9 weeks
● Lecture time: 50 minutes
● Quick turnaround times

CSE 403: challenges for students and staff

The Week-1 rush Lecture time (12:30)

What’s next?

● Thu: Work on project proposal (pre-assigned groups)

● Fri: The Joel Test (basic software engineering processes)

