
Design Patterns (part 1)

CSE 403
University of Washington

Michael Ernst

What is a design pattern?

• A standard solution to a common
programming problem

Example 1: Encapsulation (data hiding)

• Problem: Exposed fields can be directly
manipulated
– Violations of the representation invariant

– Dependences prevent changing the implementation

• Solution: Hide some components
– Constrain ways to access to the object

• Disadvantages:
– Interface may not (efficiently) provide all desired

operations

– Indirection may reduce performance

Example 2: Subclassing (inheritance)

• Problem: Repetition in implementations
– Similar abstractions have similar members (fields,

methods)

• Solution: Inherit default members from a
superclass
– Select an implementation via run-time

dispatching

• Disadvantages:
– Code for a class is spread out, and thus less

understandable
– Run-time dispatching introduces overhead

Example 3: Iteration

• Problem: To access all members of a collection, must
perform a specialized traversal for each data
structure
– Introduces undesirable dependences
– Does not generalize to other collections

• Solution:
– The implementation performs traversals, does

bookkeeping
• The implementation has knowledge about the representation

– Results are communicated to clients via a standard
interface (e.g., hasNext(), next())

• Disadvantages:
– Iteration order is fixed by the implementation and not

under the control of the client

Example 4: Exceptions

• Problem:
– Errors in one part of the code should be handled

elsewhere.
– Code should not be cluttered with error-handling code.
– Return values should not be preempted by error codes.

• Solution: Language structures for throwing and
catching exceptions

• Disadvantages:
– Code may still be cluttered.
– It may be hard to know where an exception will be

handled.
– Use of exceptions for normal control flow may be confusing

and inefficient.

Example 5: Generics

• Problem:
– Well-designed data structures hold one type of

object

– Wish to avoid code duplication

• Solution:
– Programming language checks for errors in

contents

– List<Date> instead of just List

• Disadvantages:
– More verbose types

Other examples

• Reuse implementation without subtyping

• Reuse implementation, but change interface

• Permit a class to be instantiated only once

• Constructor that might return an existing object

• Constructor that might return a subclass object

• Combine behaviors without compile-time
extends clauses

Why should you care about
design patterns?

• You could come up with these solutions on
your own
– You shouldn't have to!

• A design pattern is a known solution to a
known problem

What is a design pattern?

• A standard solution to a common programming
problem
– a design or implementation structure that achieves a

particular purpose
– a high-level programming idiom

• A technique for making code more flexible
– reduce coupling among program components

• Shorthand for describing program design
– connections among program components
– the shape of a heap snapshot or object model

• Vocabulary for communication & documentation

Why do we need design patterns?

• The programming language does not build in
solutions to every problem (why not?)
– Best solution depends on context

– Every language has shortcomings
• So does every paradigm: OO, functional, declarative,

…
– Language features start out as design patterns

When (not) to use design patterns

• Rule 1: delay
– Get something basic and concrete working first
– Improve or generalize it once you understand it

• Design patterns can increase or decrease
understandability
– Usually adds indirection, increases code size
– Improves modularity and flexibility, separates concerns,

eases description
• If your design or implementation has a problem,

consider design patterns that address that problem
• Canonical reference: the "Gang of Four" book

– Design Patterns: Elements of Reusable Object-Oriented
Software, by Gamma, Helm, Johnson, and Vlissides

• Another good reference for Java
– Effective Java: Programming Language Guide, by Bloch

Outline

• Introduction to design patterns

• Creational patterns
– constructing objects

• Structural patterns
– combining objects, controlling heap layout

• Behavioral patterns
– communicating among objects, affecting object

semantics

Creational patterns

• Constructors in Java are inflexible
1. Can't return a subtype of the class they belong to
2. Always return a fresh new object, never re-use one

• Factories – ADT creators that are not Java constructors
– Factory method
– Factory object
– Prototype
– Dependency injection

• Sharing – reuse objects (save space)
– Singleton – only one object ever exists
– Interning – only one object with a given abstract value exists
– Flyweight – share part of an object’s representation

new MyClass(x, y, z)

Factories
• Problem: client desires control over object creation
• Factory method = creator method

– Hides decisions about object creation
– Implementation: put code in methods in client

• Factory object = has a creator op, can be passed around
– Bundles factory methods for a family of types
– Implementation: put code in a separate object

• Prototype = knows how to clone itself
– Every object is a factory, can create more objects like itself
– Implementation: put code in clone methods

• Dependency injection = external reference to a creator op
– Client controls construction, without changing code
– Implementation: read method name from a file, call reflectively

Motivation for factories:
Changing implementations

• A supertype may have multiple implementations
interface Matrix { ... }
class DenseMatrix implements Matrix { ... }
class SparseMatrix implements Matrix { ... }

• Clients declare variables using the supertype (Matrix)

– Clients must use a SparseMatrix or DenseMatrix constructor

• Code: new SparseMatrix(...) or new DenseMatrix(...)

– Switching implementations requires code changes ☹

Use of factories

Factory
class MatrixFactory {
 public static Matrix createMatrix(...) {
 if (...) {
 return new SparseMatrix(...);
 else {
 return new DenseMatrix(...);
 }
 }
}

Clients call createMatrix, not a particular constructor
Advantages

• To switch the implementation, only change one place
• Factory method can decide at run time what to create

Factory method in the Java JDK

class Calendar {
 static Calendar getInstance(Locale);
}

might return a BuddhistCalendar,
JapaneseImperialCalendar,
GregorianCalendar, …

DateFormat factory methods

DateFormat class encapsulates knowledge about how to format dates and
times as text
– Options: just date? just time? date+time? where in the world?
– Instead of passing all options to constructor, use factories.
– The subtype created doesn't need to be specified.

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();

DateFormat df3 = DateFormat.getDateInstance(DateFormat.FULL,
Locale.FRANCE);

Date today = new Date();

System.out.println(df1.format(today)); // “Jul 4, 1776"

System.out.println(df2.format(today)); // "10:15:00 AM"

System.out.println(df3.format(today)); // “juedi 4 juillet 1776"

Bicycle race without factories

class Race {
 public Race() {
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();
 ...
 }
}

Specializations of bicycle race

class TourDeFrance extends Race {
 public TourDeFrance() {
 Bicycle bike1 = new RoadBicycle();
 Bicycle bike2 = new RoadBicycle();
 ...
 }
}

class Cyclocross extends Race {
 public Race() {
 Bicycle bike1 = new MountainBicycle();
 Bicycle bike2 = new MountainBicycle();
 ...
 }
}

Reimplemented the
constructor just to

use a different
subclass of Bicycle

Reimplemented the
constructor just to

use a different
subclass of Bicycle

Bicycle race without factories

class Race {

 Race() {
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();
 ...
 }
}

Defining a factory method

class Race {
 Bicycle createBicycle() { return new Bicycle(); }
 Race() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
} Defining and using

a factory method
requires foresight.

Could make this a
factory method, too

Overriding a factory method

class Race {
 Bicycle createBicycle() { return new Bicycle(); }
 Race() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
}
class TourDeFrance extends Race {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
}
class Cyclocross extends Race {
 Bicycle createBicycle() {
 return new MountainBicycle();
 }
}

No need to override constructor!

Factory objects/classes
encapsulate factory methods

class BicycleFactory {
 Bicycle createBicycle() { ... }
 Frame createFrame() { ... }
 Wheel createWheel() { ... }
 ...
}

class RoadBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
}

class MountainBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {
 return new MountainBicycle();
 }
}

Using a factory object
class Race {
 public Race(BicycleFactory bfactory) {
 Bicycle bike1 = bfactory.createBicycle();
 Bicycle bike2 = bfactory.createBicycle();
 ...
 }
}

class TourDeFrance extends Race {
 public TourDeFrance() {
 this(new RoadBicycleFactory());
 }
}

class Cyclocross extends Race {
 public Cyclocross() {
 this(new MountainBicycleFactory());
 }
}

Separate control over bicycles and races
class Race {
 public Race(BicycleFactory bfactory) {
 Bicycle bike1 = bfactory.createBicycle();
 Bicycle bike2 = bfactory.createBicycle();
 ...
 }
}

 No need for a constructor for TourDeFrance or Cyclocross

 Delegate bicycle creation to a factory object ⇒ flexibility
– Specify the race and the bicycle separately

 new TourDeFrance(new TricycleFactory())

– Change the factory at run time by setting the field.

 Might want a default constructor: new TourDeFrance()

Prototype pattern

• Every object is itself a factory
• Each class contains a clone method that

creates a copy of the receiver object

class Bicyle {
 Bicycle clone() { ... }
}

• You might see Object as the return type of
clone
– clone is declared in Object
– Design flaw in Java 1.4 and earlier: the return

type may not change covariantly in an overridden
method

Using prototypes

class Race {

 public Race(Bicycle bproto) {
 Bicycle bike1 = (Bicycle) bproto.clone();
 Bicycle bike2 = (Bicycle) bproto.clone();
 ...
 }
}

Again, we can specify the race and the bicycle
separately:

new TourDeFrance(new Tricycle())

Compare to using a factory object:
 public Race(BicycleFactory bfactory) {
 Bicycle bike1 = bfactory.createBicycle();

Dependency injection

Change the factory without changing the code
• With a regular factory object:
 BicycleFactory f = new TricycleFactory();
 Race r = new TourDeFrance(f)
• With external dependency injection:
 BicycleFactory f = (BicycleFactory)
 DependencyManager.get("BicycleFactory");

 Race r = new TourDeFrance(f);

Plus an external file:
<service-point id=“BicycleFactory">
 <invoke-factory>
 <construct class=“Bicycle">
 <service>Tricycle</service>
 </construct>
 </invoke-factory>
</service-point>

+ Change the factory without recompiling
- Program requires external file to run
- Mistakes in the file are caught at run time

Aside: Reflection (= meta-programming)

• Call a method named by a string

Ordinary code: Date y = MyClass.foo();

Reflective code:
String className = "MyClass";
String methodName = "foo";
Class[] paramTypes = {};
Object[] args = {};
Class clazz = Class.forName(className);
// above line has same effect as: clazz = MyClass.class
Method method = clazz.getMethod(methodName, paramTypes);
Date y = (Date) method.invoke(null, args);

• Access fields

• List methods and fields

• Change visibility (private to public)

+ Powerful
- Error-prone, confusing,

no compile-time checking

Why?

• Dependency injection

• Access private fields & methods

• Different library versions (w/ or
w/o a method)

• Debuggers & programming tools

• (De)serialization

• Obfuscation (malicious code)

Sharing

Recall the second weakness of Java constructors
Java constructors always return a new object, never a

pre-existing object

• Singleton: only one object exists at runtime
– Factory method returns the same object every time

• Interning: only one object with a particular (abstract)
value exists at run time
– Factory method returns an existing object, not a new one

• Flyweight: separate intrinsic and extrinsic state,
represent them separately, and intern the intrinsic
state
– Implicit representation uses no space

Singleton

• Only one object of the given type exists
• Shared resource
• Examples:

– Cache
– FileSystem , ThreadPool , Runtime
– I/O: KeyboardReader, PrinterController, Desktop
– Logger for diagnostic messages
– Configuration file

• An object has fields like “static fields” but a
constructor decides their values
– Logically group the values (don’t pollute namespace)
– Example: Internationalization: messages in a

particular language

Singleton

class Bank {
 private static Bank theBank;

 // private constructor
 private Bank() { ... }

 // factory method
 public static Bank getBank() {
 if (theBank == null) {
 theBank = new Bank();
 }
 return theBank;
 }
 ...
}

Only one object of the given type exists

Singleton

class Bank {
 private static Bank theBank;

 // private constructor
 private Bank() { ... }

 // factory method
 public static Bank getBank() {
 if (theBank == null) {
 theBank = new Bank();
 }
 return theBank;
 }
 ...
}

class Bank {
 private static Bank theBank
 = new Bank();

 // private constructor
 private Bank() { ... }

 // factory method
 public static Bank getBank() {

 return theBank;
 }
 ...
}

Only one object of the given type exists

Lazy
allocation

Eager
allocation

What are the
tradeoffs between
the two approaches?

Interning pattern

• Reuse existing objects instead of creating new ones
– Less space

– May compare with == instead of equals()

• Sensible only for immutable objects

• Java builds this in for strings: String.intern()

StreetSegment
without interning

StreetSegment
with interning

This ought to
use weak

references.

How to implement interning

• Maintain a collection of all objects
• If an object already appears, return that instead

HashMap<String, String> segnames;
String canonicalName(String n) {
 if (segnames.containsKey(n)) {
 return segnames.get(n);
 } else {
 segnames.put(n, n);
 return n;
 }
}

• Two approaches:
– Create the object, but perhaps discard it and return

another
– Check against the arguments before creating the

new object

Why not
Set<String>?

Set supports
contains (which
uses equals) but
not get; no good
way to get the
canonical value.

Why not
return n?

It is not the
canonical
value

java.lang.Boolean constructor does not use
interning

public class Boolean {
 private final boolean value;
 // construct a new Boolean value
 public Boolean(boolean value) {
 this.value = value;
 }

 public static Boolean FALSE = new Boolean(false);
 public static Boolean TRUE = new Boolean(true);
 // factory method that uses interning
 public static valueOf(boolean value) {
 if (value) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
}

Recognition of the problem

Javadoc for Boolean constructor:

Allocates a Boolean object representing the value argument.

Note: It is rarely appropriate to use this constructor. Unless a new
instance is required, the static factory valueOf(boolean) is
generally a better choice. It is likely to yield significantly better
space and time performance.

Josh Bloch (JavaWorld, January 4, 2004):

The Boolean type should not have had public constructors.
There's really no great advantage to allow multiple trues or
multiple falses, and I've seen programs that produce millions of
trues and millions of falses, creating needless work for the
garbage collector.

So, in the case of immutables, I think factory methods are great.

Save space by not storing data twice
(one aspect of “Flyweight” pattern)

class Edge {
 Node start;
 Node end;
 String label;
}

class Graph {
 Map<Node, Set<Edge>> edges;
}

// client code
Edge e = g.getFirstEdge(n);
… e.start … e.end … e.label …

class OutgoingEdge {
 Node start;
 Node end;
 String label;
}

class Graph {
 Map<Node, Set<OutgoingEdge>> edges;
}

// client code
Edge e = g.getFirstEdge(n);
… n … e.end … e.label …

If no labels,
use Node here

Flyweight pattern

• Good when many objects are mostly the same
– Interning works only if objects are entirely the same

and do not change (e.g., immutable)
• Intrinsic state: same across all objects

– Technique: intern it (interning requires immutability)
• Extrinsic state: different for different objects

– Represent it explicitly
– Advanced technique: make it implicit (don’t even

represent it!)
• Clients store or compute it
• Implicit data must not change (or can be recomputed)

Example without flyweight: bicycle spoke
class Wheel {
 FullSpoke[] spokes;
 ...
}
class FullSpoke {
 int length;
 int diameter;
 bool tapered;
 Metal material;
 float weight;
 float threading;
 bool crimped;
 int location; // position on the rim and hub
}

Typically 32 or 36 spokes per wheel
but only 3 varieties per bicycle.

In a bike race, hundreds of spoke varieties, millions of instances

Alternatives to FullSpoke
// Represents a spoke but not its location
class IntrinsicSpoke {
 int length;
 int diameter;
 boolean tapered;
 Metal material;
 float weight;
 float threading;
 boolean crimped;
 // no location field (FullSpoke has a location field)
}

This doesn't save space: it's the same as FullSpoke:
class InstalledSpokeFull extends IntrinsicSpoke {
 int location;
}

This saves space:
class InstalledSpokeWrapper {
 IntrinsicSpoke s; // refer to interned object
 int location;
}

… but the flyweight version will use even less space

Original code to true (align) a wheel

// This class is interned
class FullSpoke {
 // Tension the spoke by turning the nipple the
 // specified number of turns.
 // modifies: the wheel but not the spoke
 void tighten(int turns) {
 ... location ... // location is a field
 }
}

class Wheel {
 FullSpoke[] spokes;

 void align() {
 while (wheel is misaligned) {
 // tension the ith spoke, which affects the wheel
 ... spokes[i].tighten(numturns) ...
 }
 }
}

What is the value of the
location field in spokes[i]?

Flyweight code to true (align) a wheel

// This class is interned
class IntrinsicSpoke {
 // Tension the spoke by turning the nipple the
 // specified number of turns.
 // modifies: the wheel but not the spoke
 void tighten(int turns, int location) {
 ... location ... // location is a parameter
 }
}

class Wheel {
 IntrinsicSpoke[] spokes;

 void align() {
 while (wheel is misaligned) {
 // tension the ith spoke, which affects the wheel
 ... spokes[i].tighten(numturns, i) ...
 }
 }
}

Clients store or compute extrinsic state (location).

Logically, each spoke has intrinsic state and a location.

Represent only the intrinsic state.
Use interning to save space.

Is this a reasonable abstraction?

Flyweight discussion

• What if FullSpoke contains a wheel field
pointing at the Wheel containing it?

• What if FullSpoke contains a boolean broken
field?

Flyweight is rarely used

• Flyweight is manageable only if there are very few
mutable (extrinsic) fields.

• Flyweight complicates the code.

• Use flyweight only when profiling has determined
that space is a serious problem.

Wheel methods pass this to the
methods that use the wheel field.

Add an array of booleans in Wheel,
parallel to the array of Spokess.

