Software Design

CSE 403 Software Engineering
Autumn 2023

Today’'s Outline

1. Quick recap — Architecture vs Design
2. Some practical design considerations
3. Class quiz on some design/coding best practices ©

See Appendix for a short primer on CSE 331 design material:
« UML (unified modeling language)
* Object oriented design principles
* Design patterns

Reminder — Weekly status reports start now

Due each Wednesday 11:59pm
Submit to your github — details on “Project” tab of class website

CSE 403: Software engineering Home Calendar Readings' Project = Syllabus

Weekly status reports

Weekly status reports help to plan and reflect on tasks, and keep the staff and yourselves informed about your progress.

Format

Each status report must be a markdown file and must include the following two sections:
* Team report (status update for your TA, including an agenda for the project meeting); and
o Contributions of individual team members.

Both sections should have the following three subsections -- each about a paragraph or organized as bullet points.
o The first subsection is easy. It should be an exact copy of the third section from last week (i.e., goals from a week ago). It can be empty for the first week.
* The second subsection should report on progress and issues: what you did, what worked, what you learned, where you had trouble, and where you are blocked.
® The third subsection should outline your plans and goals for the following week. Bullet points are fine. If tasks from one week aren't yet complete, they should roll over
into tasks for the next week, with an updated estimate for time to completion. For the team report, this subsection should be higher-level and indicate who is
responsible for what tasks. Also, it's good to include longer-term goals in this list as well, to keep the bigger picture in mind and plan beyond just the next week.

Submission

All weekly status reports must be committed to your project git repository, inside a top-level directory called reports.

High level overview from last class

Requirements

Architecture

Design

Level of abstraction

Source code

ss920.4d jusawdo|anaq

The level of abstraction is key

» With both architecture and design,

uses

we're building an abstract

representation of reality

* Architecture - what components
are needed, and what are their

connections

* Design - how the components are
developed

/ N
View Controller
upd;& manipulates

Model
\\

Some tried-and-true design principles

« KISS principle (keep it simple, stupid)

* YAGNI principle (you ain't gonna need it)

 DRY principle (don't repeat yourself)

» Single responsibility (focus on on doing one thing well — high cohesion)

« Open/closed principle (open for extension, closed for modification)

* Liskov substitution principle (user of base class can use instance of derived)

* Interface segregation principle (don't force client to implement an interface if
they don't need it)

« High cohension, loose coupling principle (path to design success)

An Introduction to Software Development
Design Principles — GeeksforGeeks (3/2023)

6

Let's shake things
up and look at
code!

Many thanks to René Just, UW CSE Prof

Quiz setup

Project groups or small teams of neighboring students
6 code snippets

Round 1 (PollEverywhere - https://pollev.com/cse403au)
 For each code snippet, decide if it represents good or bad practice
 Goal: discuss and reach consensus on good or bad practice

Round 2 (Discussion)
For each code snippet, try to understand why it is good or bad practice
Goal: come up with an explanation or a counter argument

Round 1: good or bad?
https://pollev.com/cse403au

Snippet 1. good or bad?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty())
{
return null;
} else {
int numLogs = .. // determine number of log
files

File[] allLogs = new File[numLogs];

for (int i=0; i<numLogs; ++i) {
allLogs[i] = .. // populate the array

}

return alllogs;

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;
¥
if (y<0) {
y = -V
¥

return Math.max(x, y);

}

13

Snippet 5: good or bad?

public class ArrayList<E> {
public E remove(int index) {

}

public boolean remove(Object o) {

}

14

Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
}
public int getX() {
return this.x;
}
public int getY() {
return this.y;

}

& Respond at pollev.com/cse403au n

Design Quiz - Good or bad?

0 done
70 underway

Powerad hyv ‘h Pall Fuvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Round 1: good or bad?
and Round 2: why?

17

Spoiler alert - staff opinions on this ©

ettt

Snippet 1: bad
Snippet 2: bad
Snippet 3: good
Snippet 4: bad
Snippet 5: bad
Snippet 6: good

18

Snippet 1. good or bad?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files

File[] allLogs = new File[numLogs];

for (int i=0; i<numlLogs; ++i) {
allLogs[i] = .. // populate the array

}

return alllogs;

And the survey says ...

Good

Bad

@ When poll is active, respond at pollev.com/cse403au

Snippet1: etAIILogs

inprpri h\; ‘h Pnll Fvnrvwhnrn

en. Get help at pollev.com/app

Total Results: 0

"u

Snippet 1. this is bad! why?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files

File[] allLogs = new File[numLogs];

for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array

}

return alllogs;

21

Snippet 1. this is bad! why?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array

}

return alllogs;

Null references...the billion dollar mistake.

Apologies and retractions P

Speaking at a software conference named QCon London!?4l in 2009, he
apologised for inventing the null reference:[2°!

I call it my billion-dollar mistake. It was the
invention of the null reference in 1965. At that
time, I was designing the first comprehensive type
system for references in an object oriented
language (ALGOL W). My goal was to ensure that

all use of references should be absolutely safe, with
Tony Hoare checking performed automatically by the compiler.
But I couldn't resist the temptation to put in a null

* Programming languages
* Concurrent
programming implement. This has led to innumerable errors,

* Quicksort vulnerabilities, and system crashes, which have

probably caused a billion dollars of pain and

reference, simply because it was so easy to

damage in the last forty years.

23

Snippet 1: this is bad! why? .

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array

}

return alllogs;

}

File[] files = getAlllogs();
for (File f : files) {

} :
Don’t return null; return an empty array instead.

Snippet 1. this is bad! why?

public Fi tAlllegs{Pirectory—dir)—
if (dir == null || !dir.exists() || dir.isEmpty()) {
return nulil;

} else {
int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array
}

return alllogs;

No diagnostic information.

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

And the survey says ...

Good

Bad

@ When poll is active, respond at pollev.com/cse403au

Snippet2: addStudent

inprnri hv ‘h Pnll Fvervwhere
oo T

en. Get help at pollev.com/app

Total Results: 0

"u

Snippet 2: short but bad! why? f?

public void addStudent(Student student, String course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)
}

28

Snippet 2: short but bad! wh

7 ,/.
% 7f=

public void add 2 udent student, String course) {

csedv e -ad udent);

}
allStudents.add(student)
}

Use constants and enums to avoid literal duplication.

29

Snippet 2: short but bad! why? i?

/\

publidixgif/é}dStudent(Student student, String course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

Consider always returning a success/failure value.

30

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

And the survey says ...

Good

Bad

& When poll is active, respond at pollev.com/cse403au

Snippet3: PaymentType

Powered hv ‘h Pall Fvervwhere

r screen share software, share the entire screen. Get help at pollev.com/app

Total Results: 0

"u

Snippet 3: this is good, but why? f?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

33

Snippet 3: this is good, but why? i?

public @nﬂype {DEBIT@

public void doTransaction(double amount,(PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;
case CREDIT:
.. // process credit card
break;
default:
hrow new IllegalArgumentException("Unexpected paymenE_EXEg:);/

A4

Type safety using an enum; throws an exception for unexpected
cases (e.g., future extensions of PaymentType).

34

Snippet 4. good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;
}
if (y<0) {
y = -Y;
}

return Math.max(x, y);

And the survey says ...

.. @ When poll is active, respond at pollev.com/cse403au ..

Snippet4: etAbsMax

Good

Bad

Total Results: 0

inprnri hv ‘h Pnll Fvnrvwhnrn
presentation to see live content, For screen share software, share the entire screen. Get help at pollev.com/app .

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;
}
if (y<0) {
y = -Y;
}

return Math.max(x, y);

}

37

Snippet 4: also bad! huh?

public int getAbsMa{
if iiiii {

}
if ii<0) {
}

return Math.max(x, y);

Assuming these are
pass by reference...

Method parameters should be final (sacred);
use local variables to sanitize inputs.

38

Snippet 5: good or bad?

public class ArraylList<E> {
public E remove(int index) {

}

public boolean remove(Object o) {

}

And the survey says ...

& When poll is active, respond at pollev.com/cse403au

Snippet5: ArrayList

Good

Bad

Total Results: 0

Powered hyv ‘h Pall Fvervwhere

entation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app "=

Snippet 5: Java API, but still badl why? 72?
S

public class ArraylList<E> {
public E remove(int index) {

}

public boolean remove(Object o) {

}

]

41

Snippet 5: Java API, but still badl why? i?

public class ArrayList<E> {

public Ecfemove(int index) {

}
public booleancremove(Object 0)>{
}

- ®

ArrayList<String> 1 = new ArrayList<>();
Integer index = Integer.valueOf(1);
1.add(“Hello”);

1.add(“World”); What does the last call return
1.remove(index); (1.remove(index))?

Snippet 5: Java API, but still badl why? i?

public class ArraylList<E> {
public t index) {
}

public Object o) {
}

- ®

ArrayList<String> 1 = new ArrayList<>();
Integer index = Integer.valueOf(1);
1.add(“Hello”);

1.add(“World”); Avoid overloading with
1.remove(index); different return values.

43

Snippet 5: Java API, but still badl why? i?

public class ArrayList<E> {

public Ecfemove(int index) {

}
public booleancremove(Object 0)>{
}

- ®

ArrayList<String> 1 = new ArrayList<>();
Integer index = Integer.valueOf(1);
1.add(“Hello”);

1.add(“World”); Avoid method overloading,
1.remove(index); which is statically resolved.

44

Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
¥
public int getX() {
return this.x;
}
public int getY() {
return this.y;

}

}

And the survey says ...

@ When poll is active, respond at pollev.com/cse403au

Snippet6: 'Point

Good

Bad

Total Results: 0

Pawered hyv ‘h Pall Fvervwhere
RSB 208 L ot o e, S the i seraan el SR O ISoR o ..

Y 4

\

Snippet 6: this is good, but why?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
}
public int getX() {
return this.x;
}
public int getY() {
return this.y;

}

Snippet 6: this is good, but why? i?

public clas
private final int x;

—_private final int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;

}
public int getY() {

return this.y;

}

Good encapsulation; immutable object.

All for now on design

« We'll do a double click on Ul design later in the course —it's a
course in itself, CSE 440 — Intro to HCI

 Review the design primer in the following slides to refresh
your knowledge of design considerations for your project

49

Additional Design Material

Provided by René Just, UW CSE Professor
Concepts covered in CSE 331 — Software design and implementation

UML crash course

UML crash course

The main questions

e Whatis UML?

e |s it useful, why bother?
e When to (not) use UML?

What is UML?

Unified Modeling Language.
Developed in the mid 90's, improved since.
Standardized notation for modeling OO systems.

A collection of diagrams for different viewpoints:
o Use case diagrams

Component diagrams

Class and Object diagrams

Sequence diagrams

Statechart diagrams

o O O O O

What is UML?

Unified Modeling Language.

Developed in the mid 90's, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:

o Use case diagrams —
o Component diagrams © o
o Class and Object diagrams SN g
o Sequence diagrams \ & &%
o Statechart diagrams)
0o 2 B o

N o we /

What is UML?

Unified Modeling Language.

Developed in the mid 90's, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:

o Use case diagrams :
Component diagrams .
Class and Object diagrams =
Sequence diagrams == ==
Statechart diagrams ——

© O O O O

Are UML diagrams useful

e U se Canan

Dyt Boun Ay

o=
@3

Chet
""""""t (If wine we adewd] }

56

Are UML diagrams usetul?

Communication

e Forward design (before coding)
o Brainstorm ideas (on whiteboard or paper).
o Draft and iterate over software design.

Documentation

e Backward design (after coding)
o Obtain diagram from source code.

In this class, we will use UML class diagrams mainly for visualization
and discussion purposes.

57

Classes vs. objects

Class

e Grouping of similar objects.
o Student
o Car
e Abstraction of common properties and behavior.
o Student: Name and Student ID
o Car: Make and Model

Object
e Entity from the real world.

e Instance of a class
o Student: Joe (4711), Jane (4712), ...
o Car: Audi A6, Honda Civig, ...

UML class diagram: basic notation

MyClass

UML class diagram: basic notation

Name
MyClass

- attrl : type Attributes
<visibility> <name> : <type>

Methods

+ foo() : ret_type <visibility> <name>(<param>*) :
<return type>

<param> := <name> : <type>

UML class diagram: basic notation

MyClass

- attrl : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods

<visibility> <name>(<param>*) :
<return type>

<param> := <name> : <type>

Visibility

private
package-private
protected

+ public

Z

UML class diagram: basic notation

Name
MyClass
- attrl : type Attributes
attr2 : type <visibility> <name> : <type>
+ attr3 : type

Static attributes or methods are underlined

~ bar(a:type) : ret type 4

+ foo()

: ret_type

/ Methods

<visibility> <name>(<param>*) :
<return type>

<param> := <name> :@ <type>

Visibility

- private

~ package-private
protected

+ public

UML class diagram: concrete example

public class Person { Person
}
public class Student Student

extends Person {

private int id; - id

¢ int

public Student(String name,

)) + Student(name:String, id:int)
int id) {

+ getId() : int
}

public int getId() {
return this.id;
}
}

Classes, abstract classes, and interfaces

MyClass

MyAbstractClass <<interface>>
{abstract} Mylnterface

Classes, abstract classes, and interfaces

MyClass

MyAbstractClass
{abstract}

<<interface>>
Mylnterface

public class
MyClass {

public abstract class
MyAbstractClass {

public abstract void

public interface
MyInterface {

public void

public void op(); op();
op() {
}
public int op2() { public int
public int . op2();

I R%Pof detail in a give[}n dlass or interface may va

}
}

context and purpose.

rK/ and depends on

65

UML class diagram: Inheritance

SuperClass <<interface>>

Anlnterface
v

/7
7/

. . . 7/
is-a relationship e
e

7/
7’
7/

SubClass

public class SubClass extends SuperClass implements AnInterface

UML class diagram: Aggregation andComposition

Aggregation Composition
Part Part
J>has—a relationship kas-a relationship
Whole Whole
® Existence of Part does not depend e Part cannot exist without Whole.
on the existence of Whole. e Lifetime of Part depends on Whole.
e Lifetime of Part does not depend e Oneinstance of Whole is the single
on Whole. owner of Part.

e Nosingle instance of whole is the unique
owner of Part (might be shared with other
instances of Whole).

Aggregation or Composition?

Room

A

Customer

Building

A

Bank

Aggregation or Composition?

Composition

Room

Aggregation

¢

Customer

Building

g

Bank

What about class and students or body and body parts?

69

UML class diagram: multiplicity

1 1
A B

Each A is associated with exactly one B
Each B is associated with exactly one A

1..2 *

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

UML class diagram: navigability

A B
Navigability: not specified

A > B
Navigability: unidirectional
“can reach B from A”

Navigability: bidirectional

UML class diagram: example

«interface»
TimedDevice O

ReminderTimer

-actions: List<Action>

+preformTimedAction(a: Action)

-timedDevices: List<TimedDevice>

-intervals: List<Integer>

0.* 1 +remindDevices()

+registerDevice(timedDevice: TimedDevice, a: Action, interval: int)
+unregisterDevice(timedDevice: TimedDevice, a: Action)

CGMsensor

-receivers: List<CGMreceiver>

0..*

-measureAndSendMeasurement()
+pairReceiver(r: AbstractCGMreceiver)
+unpairReceiver(r: AbstractCGMreceiver)

«ennumeration»
Action

AbstractCGMreceiver

#batteryLevel: int
#minBatteryLevel: int
#maxHealthyLevel: int
#minHealthyLevel: int
#batteryAlert: Alert
#tooLowAlert: Alert
#tooHighAlert: Alert

#dailyData: Measurement[500]

BATTERY
GLUCOSE
INSULIN
BASAL
MEASURE

Pump

+checkBatteryLevel()
+setHighLevel(level: int)
+setLowLevel(level: int)
+lastindex(): ind

+addMeasurement(measurement: Measurement) Q\

-insulinLevel: int
-basalAmount: double
-carbRatio: int
-correctionFactor: int
-runningOutOfinsulinAlert: Alert

Alert

-message: String

+soundAlert()

.500

Measurement
-date: Date

+getinsulinLevel(): int
+getBasalAmount(): int
+setBasalAmount(amount: int)
+getCarbRatio(): int
+setCarbRatio(ratio: int)
+getCorrectionFactor(): int
+setCorrectionFactor(factor: int)
-injectinsulin(amount: double)
+calculateBolus(carbs: int): int
+deliverBasal()

-glucose: int

+checklnsulinLevel()

-fromFinger: boolean

+getDate(): Date
+getGlucose(): int
+isFromFinger(): boolean

72

summary: UML

e Unified notation for modeling OO systems.
e Allows different levels of abstraction.
e Suitable for design discussions and

documentation.

OO design principles

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Information hidi

9

MyClass

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

public
public
public
public
public

public
public
public
public
public
public

public class MyClass {

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){..
void push(int e){...}
int capacitylLeft(){..
int getNumElem(){...}

int pop(){...}

int[] getElems(){...}

-}
-}

Information hiding

MyClass

public class MyClass {

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

public int nElem;

public int capacity;
public int top;

public int[] elems;
public boolean canResize;

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

public void resize(int s){...}
public void push(int e){...}
public int capacitylLeft(){...}
public int getNumElem(){...}
public int pop(){...}

public int[] getElems(){...}

What does MyClass do?

Information hidi

9

Stack

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

public
public
public
public
public

public
public
public
public
public
public

Anything that could be improved in this implementation?

public class Stack {

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){..
void push(int e){...}
int capacitylLeft(){..
int getNumElem(){...}

int pop(){...}

int[] getElems(){...}

-}
-}

78

Information hidi

+ + + + +

+ + + + + +

resize(s:int):veid
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

9

Stack

- elems : int[]

+ push(e:int):void
+ pop():int

Information hiding:

® Reveal as little information
about internals as possible.

® Segregate publicinterface and
implementation details.

® Reduces complexity.

Information hiding vs. visibility

2??

Private

Information hiding vs. visibility

® Protected, package-private, or

friend-accessible (C++).

??? /-1 ® Not part of the public API.

e Implementation detail that a
subclass/friend may rely on.

Private

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

A little refresher: what is
Polymorphism? ‘ ?
24

A

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.

Types of polymorphism
® Ad-hoc polymorphism (e.g., operator overloading)

o a+ b = String vs. int, double, etc.
® Subtype polymorphism (e.g., method overriding)
o Object obj = ...; = toString() can be overridden in
subclasses
obj.toString () ; and therefore provide a different
behavior.

® Parametric polymorphism (e.g., Java generics)
o class LinkedList<E> ({ = A LinkedList can store
elements
void add(E) {...} regardless of their type but
still
E get(int index) {...} provide full type safety.

84

A little refresher: what is Polymorphism?
An object’s ability to provide different behaviors.

Types of polymorphism

e Subtype polymorphism (e.g., method overriding)

o Object obj = ...; = toString() can be overridden
in subclasses
obj.toString () ; and therefore provide a

different behavior.

Subtype polymorphism is essential to many OO design principles.

85

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Open/closed principle

Software entities (classes, components, etc.) should
be:

e open for extensions
I ¥ ficat

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o) + draquuare()
} else if (o instanceof Circle) {
drawCircle((Circle) 0);
} else {

Square

Circle

}} + drawCircle()

Good or bad design?

Open/closed principle

Software entities (classes, components, etc.) should

be:
e open for extensions

drawCircle((C3
} else {

}...

}

Violates the open/closed principle\!

+ drawSquare()

Circle

+ drawCirclé}&\\

88

Open/closed principle

Software entities (classes, components, etc.) should be:
e open for extensions
e closed for modifications

public static void draw(Object s) { <<interface>>
if (s instanceof Shape) {
s.draw(); Shape
b oelse { + draw()
) i
} 1

- e o - -

public static void draw(Shape s) {
s.draw();

}

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Inheritance: (abstract) classes and
interfaces

Sequentiallist
{abstract}

LinkedList

Inheritance: (abstract) classes and
interfaces

LinkedList extends SequentiallList

Sequentiallist
{abstract}

;:;;;E\\\\\\\\

LinkedList

Inheritance: (abstract) classes and

interfaces

LinkedList extends SequentiallList

Sequentiallist
{abstract}

<<interface>>
List

<<interface>>
Deque

;:;;;E\\\\\\\\

LinkedList

Inheritance: (abstract) classes and
interfaces

LinkedList extends SequentialList implements List, Deque

Sequentiallist| | <<interface>> | |<<interface>>
{abstract} List Deque

7'y ¥
impIementg/

'

implements
extends

7’
'
7’

|

|

' s
|

I s
|

LinkedList

Inheritance: (abstract) classes and interfaces

<<interface>> <<lnterface>>
Ilterable Collection

<<interface>>
List

Inheritance: (abstract) classes and interfaces

<<interface>> <<lnterface>>
Ilterable Collection

W

<<interface>>
List

List extends Iterable, Collection

Inheritance: (abstract) classes and interfaces

<<interface>> <<lnterface>>
Ilterable Collection

W &(tends

Sequentiallist| | <<interface>> | |<<interface>>

{abstract} List Deque
A b 4

. b d
|mplement§,’

'

implements
extends

7’
'
7’

|

|

' s
|

I s

|

LinkedList

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

The "diamond of death”: the
problem

A
+ getNum():int

>

A.é = new D(); C

int num = a.getNum(); i

+ getNum():int

/

The "diamond of death”: the

problem

A a = new D();

A
+ getNum():int

PN

B C

int num = a.getNum();

+ getNum():int + getNum():int

Which getNum() method
should be called?

'\D/

The "diamond of death”: concrete
example

Animal
+ canFly():bool

N

Bird Horse
+ canFly():bool + canFly():bool

'\/

Pegasus

Can this happen in Java? Yes, with default methods in Java 8.

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Design principles: Liskov substitution principle

Motivating example
We know that a square (s a special kind of a rectangle.
So, which of the following OO designs makes sense?

Square Rectangle

Rectangle Square

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int Square

s the subtype requirement fulfilled?

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle r =
new Rectangle(2,2);

Rectangle Rectangle

+ width :int
+ height:int

int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | | r setwidth(w * 2);

+ getArea():int Square

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle Rectangle r . N Rectangle
+ width :int new Square(2);
+ height:int
int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | | r setwidth(w * 2);

+ getArea():int Square

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

N\

Rectangle Rectangle r = | \\\Bectangle
+ width :int new Square(2);

+ height:int

- - int A = r.getArea();
+ setwlqth(w:lnt) int w = r.getWidth();
+ setHeight(h:int) | |p setWidth(w * 2);

+ getArea():int Square
assertEquals(A * 2,

Violates thd Liskoy SBetdion orinciple!
P P

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle <<interface>>
+ width :int Shape
+ height:int t

+ setWidth(w:int) | = ==- L -
+ setHeight(h:int) '
+ getArea():int Rectangle Square

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Inheritance vs. (Aggregation

Person

i

Student

Customer

Bank K>

vs. Composition)

Room

Building |‘-

public class

Student
extends

Person{

public Student(){
1

public class Bank {
Customer c;

public Bank(Customer

o)

this.c = c;

public class Building
{

Room r;

public Building(){
this.r = new Room();

J
is-a relationship
}

1
J

2 |
J

}' o has-a reIat'}dh’ship

110

Design choice: inheritance or composition?

List List
<<interface>> I <<interface>>
yy ! yy
] |]

] 1]
LinkedList : LinkedList

|
T I
|
Stack Stack |H

public class Stack<E>

extends
LinkedList<E> {

List<E> {

}

Ijnkpdli<f<>();

public class Stack<E> implements

private List<E> 1 = new

Hmm, both designs seem Valid -- what are pros and cons?

Design choice: inheritance or composition?

List > " List
<<interface>> I <<interface>>
yy ! yy
] |]

] 1]

)) I))
LinkedList I LinkedList
|
I
|

T

Stack Stack |H

Pros Pros
e No delegation methods required. e Highly flexible and configurable:
e Reuse of common state and behavior. no additional subclasses required for
different compositions.
Cons
Cons

e Exposure of all inherited methods
(a client might rely on this particular
superclass -> can’t change it later).

e Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

e Allinterface methods need to be
implemented -> delegation methods
required, even for code reuse.

OO design principles: summary

Information hiding (and encapsulation)
Open/closed principle

Liskov substitution principle
Composition/aggregation over inheritance

OO design patterns

A first design problem

Weather station revisited

Current 30 day history
25° F ~
TN
39°C min: 20° F /\/U\J
max: 35° F Temp. sensor

Reset history
button

What's a good design for the view
component?

Temp.

min: 20° E Reset history

button
09/01,12°
09/02,14°

max: 35° F

116

Weather station: view

= = o =

View

<<interface>> B

1..n

+draw(d:Data)

SimpleView

GraphView

View

ComplexView

+draw(d:Data)

+draw(d:Data) +draw(d:Data)

-views:List<View>

-3.9°C

min: 20° F
max: 35°F

+draw(d:Data)
+addView(v:View)

How do we need to
implement
draw(d:Data)?

Weather station: view

<<interface>> B 1..n

View
+draw(d:Data)
A
I
= = Em Em Em Em Em Em e Em e I el e e =
1 1 ! 1 <>
SimpleView GraphView .View ComplexView

+draw(d:Data) +draw(d:Data) +draw(d:Data) -views:List<View>

+draw(d:Data)
+addView(v:View)

25° F public void draw(Data d) {
4:::::::::::: for (View v : views) {

v.draw(d);
min: 20° F }

max: 35° F \E________,,,/////’//”—————_

-3.9°C

The general solution: Composite

pattern

<<interface>>
Component

<€

1..n

+operation()

CompA

CompB

+operation()

+operation()

Composite

-comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp (c:Component)

The general solution: Composite
pattem <<interface>>| 1..n

<€

Component
+operation()

Iterate over all composed
components (comps), call
operation() on each, and

f potentially aggregate the
I results.
=

|

|

_______________ /L_l/.7<>

CompA CompB Ccfm}{

+operation() +operation() -comps:Col/l%tion<€omponent>

+operatioﬂf)
+addComp (c:Component)
+removeComp (c:Component)

What is a design pattern?

e Addresses a recurring, common design problem.
e Provides a generalizable solution.
e Provides a common terminology.

What is a design pattern?

e Addresses a recurring, common design problem.
e Provides a generalizable solution.
e Provides a common terminology.

Pros
e Improves communication and documentation.
e "Toolbox" for novice developers.

Cons
e Risk of over-engineering.
e Potential impact on system performance.

More than just a name for common sense and best
practices.

122

Design patterns: categories

1. Structural

e Composite
e Decorator
o

1. Behavioral
e Template method
e \Visitor
o

1. Creational
e Singleton
e Factory (method)

Design patterns: categories

1. Structural
e Composite

e Decorator
[}

1. Behavioral
e Template method
e \Visitor
o

1. Creational
e Singleton
e Factory (method)

Another design problem: |/O streams

InputStream is = <<interface>>

new FileInputStream(...); hqputStrearn
+read():int

int b; . gy
while((b=is.read()) != -1) { +read(buf:byte[]):int
}

// do something T
I
[
[
[

FileInputStream

+read():int
+read(buf:byte[]):int

Another design problem: |/O streams

InputStream is = <<interface>>
new FileInputStream(...); InputStream

] +read():int

int b; +read(buf:byte[]):int

while((b=is.read()) != -1) {

// do something)
I
I
I
I

FilelnputStream Problem: filesystem I/O is expensive

+read():int
+read(buf:byte[]):int

Another design problem: |/O streams

InputStream is = <<interface>>

new FileInputStream(...); hqputStrearn
+read():int

int b; . gy
while((b=is.read()) != -1) { +read(buf:byte[]):int
}

// do something)
I
I
I
I

FilelnputStream Problem: filesystem I/O is expensive

+read():int Solution: use a buffer!
+read(buf:byte[]):int

Why not simply implement the
buffering in the client or subclass?

127

Another design problem: |/O streams

InputStream is = <<interface>>

new BufferedInputStream(InputStream
new FileInputStream(...)); Tread():int

int b; . gy
while((b=is.read()) != -1) { +read(buf:byte[]):int
} 1

// do something t 1
|
I
I
I

: O
FileInputStream BufferedinputStream
+read():int

+read(buf:byte[]):int

-buffer:byte[]

+BufferedInputStream(is:InputStream)
L+read():int

e e — |
from its buffer, which is filled by calling | +read(buf:byte[]):int

The general solution: Decorator pattern

<<interface>> y 1

Component
+operation()

CompA CompB Decorator
+operation() +operation()

-decorated:Component

+Decorator(d:Component)
+operation()

Composite vs. Decorator

<<interface>>
Component

+operation()

Composite

CompA

Decorator

-comps(ﬁéiizgfion<ComE££zE£S> +operation()

+operation()
+addComp (c:Component)
+removeComp (c:Component)

-decorated

+Decorator(d:Component)
+operation()

