Software Requirements

CSE 403 Software Engineering
Autumn 2023

We are moving through the SDLC components

@

Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8 Wk9 Wk10 Wk11

Topic Intro + Lifecycles CD/CI, Test, Debug 1P M Double-click topics

Project CD/ClI Final Release

Milestone A
Delivery

Readings

+ In-class Git m

Exercises

We are here
Requirements

UW CSE 403 Au23

Today's Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

UW CSE 403 Au23

Recapping where requirements fit in

Common stages

Virtually all SDLC models have Requirements
the following stages ————p Design
Requirements are at the top of Implementation
the list as we start the journey Testing

of product development
Release

Maintenance

UW CSE 403 Au23

Sharing a visual of their importance

b"
X

(]

(]

!

How the customer
explained it

L

How the project
leader understood

How the analyst
described it

How the developer
wrote it

How the business

Wit

How the product
was documented

How operations
installed it
] L

L

How the customer
was billed

ya

How it was
supported

What customer
ally needed

50, what exactly are software requirements?

Requirements specify what to build

« describe what, not how
« describe customer needs, not how they'll be implemented
« reflect product design, not software design

Often you need to dig deep to get a solid set of requirements

UW CSE 403 Au23

Let's work through an example

Are these good requirements for a music
player?

* Available on web and mobile
* Provide volume control
 Provide ability to flag favorites using a pulldown menu
« Enable variable playback speed

* Propose songs using ChatGPT recommendations

* Propose songs based on customer selected genres

« Written in javascript for extensibility and reliability

UW CSE 403 Au23

How about our swing example

What are good and sufficient requirements for the swing?

 Attaches to a single branch of a tree
« Seats one person 3-5ft tall

« Swings when pushed

« Appeals to environmental advocates

UW CSE 403 Au23

Requirements are hard but important

They help us:

- Understand precisely what is required of the software

- Communicate this understanding precisely to all involved parties

- Monitor and control production to ensure that system meets
specification

UW CSE 403 Au23 9

In practice, they're used by many during SDLC

Customers: what should be delivered (contractual base)

- Project managers: scheduling and monitoring (progress indicator)
- Designers: basis for a spec to design the system

- Developers: a range of acceptable implementations

- QA / Testers (DevTest): a basis for testing,
verification, and validation

UW CSE 403 Au23

Today's Outline

1. What are requirements and what is their value?
2. How can we gather (elicit) requirements? (=
3. What are techniques used to specify them?

UW CSE 403 Au23

11

CHAOS FACTORS OF SUCCESS

FACTORS OF SUCCESS POINTS INVESTMENT

| et's start with I .
S O m e d a t a Emotional Maturity 15 15%

User Involvement 5 15 15%

From the Standish Dot ion 15 15%
report on software

. Skilled Resources 10 10%
project success (2015)
Standard Architecture 8 8%
Customer involvement —— 5 o
is 3rd highest factor of
. Modest Execution 6 6%
project success!
Project Management Expertise 5 5%
Clear Business Objectives 4 4%

The 2015 Factors of Success. This chart reflects our opinion of the importance of each attribute and our recommendation of the amount of

https://www.standishgroup.com/sample_research_files/CHAOSReport2015- effort and investment that should be considered to improve project success.

Final.pdf

Companies recognize this — for example...

fThe customer is always right W / mUnderstand and serve the \
Z A

customer better than anyone
(Marshall Field’s department J else,

store slogan, 1852) (2) forget about everything else,
and
(3) make sure every little thing you
do serves (1), always and
[Customer obsession rather than a everywhere
competitor focus

(Summary of Apple’s original three
dOne of Amazon’s four principles)) principles, Steve Jobs)

UW CSE 403 Au23 13

Ok, so, how do we engage with customers

Ideas? "\/ ,‘
\ n

- Interviews B
- Observations '»_____ .
- Shadowing L__/ R

- Prototyping L. (
- Mockups

- Hallway conversations
- Focus groups

Keep your customer (user) at the center of the discussion
Listen, observe and ask clarifying questions

14

Do's and don'ts in requirements gathering

Do:

Talk to the customers -- to learn how they work

Ask questions throughout the process -- "dig" for requirements
Think about why users do something in your service, not just what
Allow (and expect) requirements to change later

UW CSE 403 Au23

15

Do's and don'ts in requirements gathering

Do:

« Talk to the customers -- to learn how they work

 Ask questions throughout the process -- "dig" for requirements

« Think about why users do something in your service, not just what
« Allow (and expect) requirements to change later

Don't:

« Be too specific or detailed* (caveats apply)

« Describe complex business logic or rules of the system

« Describe the exact user interface used to implement a feature
« Try to think of everything ahead of time* (caveats apply)

« Add unnecessary features not wanted by the customers

UW CSE 403 Au23 16

The whole process is more formally known
as requirements engineering

Requirements engineering is the science of eliciting, analyzing,
documenting, and maintaining requirements

As you collect your class project requirements, consider three categories:

* Functional requirements
e.g., input-output behavior

* Non-functional requirements
e.g., security, privacy, scalability

« Additional constraints
e.g., programming language, frameworks, testing infrastructure

UW CSE 403 Au23

17

Meet Alistair Cockburn — Requirements SME

Alistair Cockburn (/ zlister ‘koubarn/ AL-ist-ar KOH-barn) is an American computer Alistair Cockburn
scientist, known as one of the initiators of the agile movement in software development.
He cosigned (with 17 others)"! the Manifesto for Agile Software Development.!!

Agile Software
Development &3t

The Conperative Game

Life and career [edt]

Cockburn started studying the methods of object oriented (OO) software development for
IBM. From 1994, he formed "Humans and Technology" in Salt Lake City. He obtained his
degree in computer science at the Case Western Reserve University. In 2003, he
received his PhD degree from the University of Oslo.

Cockburn helped write the Manifesto for Agile Software Development in 2001, the agile
PM Declaration of Interdependence in 2005, and co-founded the International Consortium
for Agile in 2009 (with Anmed Sidky and Ash Rofail). He is a principal expositor of the use
case for documenting business processes and behavioral requirements for software, and
inventor of the Cockburn Scale for categorizing software projects.

Writing Effective
Use Cases

(5

0 Y
The methodologies in the Crystal family (e.g., Crystal Clear), described by Alistair Alistair Cockburn in 2007
Cockburn, are considered examples of lightweight methodology. The Crystal family is Nationality American
colour-coded to signify the "weight” of methodology needed. Thus, a large project which | Occupation Computer programmer
has consequences that involve risk to human life would use the Crystal Sapphire or
Crystal Diamond methods. A small project might use Crystal Clear, Crystal Yellow or Crystal Orange.

Cockburn presented his Hexagonal Architecture (2005) as a solution to problems with traditional layering, coupling and entanglement.
In 2015, Alistair launched the Heart of Agile movement which is presented as a response to the overly complex state of the Agile
industry.

Alistair Cockburm

Selected publications |edi)

» Surviving Object-Oriented Projects, Alistair Cockburn, 1st edition, December, 1997, Addison-Wesley Professional, ISBN 0-201-
49834-0.
« Writing Effective Use Cases, Alistair Cockburn, 1st edition, January, 2000, Addison-Wesley Professional, ISBN 0-201-70225-8.

https://en.wikipedia.org/wiki/Alistair_Cockburn
* Agile Software Development, Alistair Cockburn, 1st edition, December 2001, Addison-Wesley Professional, ISBN 0-201-69969-9.

Cockburn requirements template

A

Purpose and scope

Terms (glossary)

Use cases (the central artifact of requirements)
Technology used

Other
» Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies
Business rules (constraints)
Performance demands
Security, documentation
Usability
Portability
Unresolved (deferred)

Human factors (legal, political, organizational, training)
UW CSE 403 Au23

Many companies
will have a template
for you to use

Uniformity is good
for you and the
customer

See what we're
asking of you in the
Requirements
milestone
assignment!

19

More tips — watch out for these as you engineer

 Unclear scope leading to unclear requirements

* Finding the right balance (depends on customer, and

the team):
» Comprehensible vs. detailed
 Graphics vs. tables and explicit and precise wording
« Short and timely vs. complete and late

 Capturing implementation details instead of
requirements

* Projecting your own models/ideas
* Feature creep

UW CSE 403 Au23 20

For your project, consider

major features and stretch

Feature creep? features

Feature creep is the gradual accumulation of features over time, beyond
what was originally committed and/or actually needed

/ Scope | Features \ Why does it happen? Because features are fun!
« Developers like to code them

« Sales teams like to pitch them
« Users (think they) want them

Why can it be bad?
« Can put your project delivery at risk
« Too many options, more bugs, more delays,

Resourcy less testing, ...

UW CSE 403 Au23 21

N

Coming up on Friday

1. What are requirements and what is their value?
2. How can we gather requirements?

3. What are techniques used to specify them?
* Use cases

Personas, user scenarios

Storyboarding

Paper prototyping

Prototyping

UML

UW CSE 403 Au23

22

Questions?

UW CSE 403 Au23

23

