
Projects and
Project Teams
CSE 403 Software Engineering
Autumn 2023

Some advice from past students:

• Foundation of the success of our team was
communication and cooperation

• Well-run and consistently scheduled
meetings helped a lot

• Working together (physically) was good
• Take time to break tasks down to manageable

chunks (+/understanding and +/estimation)
• Don’t underestimate the time to learn new

tools/APIs/languages
• Do small frequent updates and commits;

failing to do this results in merges that can be
a nightmare

• Need an upfront testing design – test well
before checkin

Projects and Team assignments are done!

• Thank you for all the great pitches!
• Projects and team assignments are done
• Matched as best as possible against student preferences
• 100% got one of their top 3 choices

• See Ed Announcement for link with Project teams
• Staff will create a separate Ed Discussion channel for each team

to use to privately communicate with staff
• Consider creating a channel for your team members also

UW CSE 403 Au23 2

Considerations for your new teams

• The project belongs to the whole team – all
members are created equal

• Embrace diverse ideas and opinions – make
your discussion zones safe places for people to
share their thoughts

• You now have opportunity to reshape/rescope
your project given the team’s collective input

• Teams and individuals must ensure everyone
contributes

UW CSE 403 Au23 3

TEAM Expectations
Participate

Engage
Take initiative

Respectful
Responsible

Communicate
Reflect, improve

Deliver

Considerations for your project IP

• Your team owns its work’s intellectual property (IP)
• If you leverage 3rd party software, including APIs, make sure

you understand the license agreement
• UW’s comotion can help guide you if you want to commercialize

your project or patent a novel idea https://comotion.uw.edu/

UW CSE 403 Au23 4

Key times in your typical week

UW CSE 403 Au23 5

Tuesday

• Team meeting -
1:30pm

• Final review of current
assignment

• Assignment due
11:59pm

Wednesday

• Read next assignment
and collect questions
(leverage class
discussion board or TA)

• Create status report and
agenda

• Status report and
agenda due 8pm

Thursday

• Project meeting with
product owner (TA) –
1:30pm

• Get feedback on last
assignment

• Resolve project-specific
questions on current
assignment

• Organize for next
delivery

Time to roll!

UW CSE 403 Au23 6

• Project weekly status report info is posted on the Project tab
• No report required this week (submissions start 10/18)
• Use Thursday to discuss with your TA

• Project requirements milestone assignment is on the Calendar
• Due Tuesday 10/17, 11:59pm

The Joel Test
CSE 403 Software Engineering
Autumn 2023

Who is Joel?

UW CSE 403 Au23 8

What is the Joel Test?
The Joel Test is:
• A checklist of 12 best practices good software teams do
• Written in a blog 20 (!) years ago by Joel Spolsky
• Overlaps with the SDLC concepts we discussed

Originally …
• Scoring 12/12 is good!
• 11 is OK
• 10 or fewer is “bad”

UW CSE 403 Au23 9

So… Is the test still
relevant today?

Today’s Outline
1. Overview the 12 best practices [Time check – leave 10 min 2 and 3]
2. Discuss some hypothetical software teams/companies and see how the

practices played out in the real world
3. Vote on which team/company has the best chance of success 

• Joel test references – quick reads:
• https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-

better-code/
• https://dev.to/checkgit/the-joel-test-20-years-later-1kjk

UW CSE 403 Au23 10

The Joel Test
1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

UW CSE 403 Au23 11

The Joel Test
1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

UW CSE 403 Au23 12

The Joel Test
1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

UW CSE 403 Au23 13

The Joel Test
1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

UW CSE 403 Au23 14

The Joel Test

UW CSE 403 Au23 15

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 16

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 17

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 18

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 19

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 20

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 21

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 22

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers automated testing and monitor coverage?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 23

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers automated testing and monitor coverage?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test

UW CSE 403 Au23 24

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds use CI (Continuous Integration)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers automated testing and monitor coverage?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

The Joel Test – how does 403 stack up?

UW CSE 403 Au23 25

1. ✅ Do you use source control?
2. ✅ Can you make a build [+ release] in one step?
3. ✅ Do you make daily builds use CI (Continuous Integration)?
4. ✅ Do you have a bug database?
5. ❓ Do you fix bugs before writing new code?
6. ✅ Do you have an up-to-date schedule?
7. ✅ Do you have a spec?
8. ❓ Do programmers have quiet working conditions?
9. ❓ Do you use the best tools money can buy?
10.✅ Do you have testers automated testing and monitor coverage?
11.❓ Do new candidates write code during their interview?
12.❓ Do you do hallway usability testing?

Let’s try out the test

1. 6 teams/companies
2. Hypothetical but plausible – largely based on experience
3. Only some Joel Test questions are highlighted – assume others are

covered adequately
4. Assess the scenarios as we go

• How successful will they be in their scenario with their practices?
• How much would you like to work in such an environment?

UW CSE 403 Au23 26

https://forms.gle/q5GZtMA6uy1qSpgd6

UW CSE 403 Au23 27

The Startup Incubator team (1/6)

UW CSE 403 Au23 28

You work for an early-stage tech startup in an incubator.
Things move fast around here.
(2.) One-step builds: Your team uses the GitHub's
continuous integration tools.
(8.) Loud conditions: You work in an incubator - so you
share your cubicle with three other people, and you share
your open floor with other companies. It can get pretty loud
on a regular basis.
(9.) On a shoestring budget: Everyone works on their own
laptop, partially from home, (different OSes, etc), and you
mainly avoid paid software – compatibility issues and some
wasted time result.
(12.) Hallway usability testing: As a team you’re constantly
pinging ideas back and forth and demoing new features. As a
result your UI is great, and you tend to only build useful
features.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you use CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you use automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability

testing?

The Not-For-Profit Company team (2/6)

UW CSE 403 Au23 29

Your team works for a mission driven not-for-profit. You care
a lot about the company, really get along with your co-worker,
but some of the engineering practices are … questionable.

(1.) No source "control“: Although you have your code in
BitBucket, there is not a good process/effort to integrate
upgrades from collaborators.

(5.) Lower bug priority: The company has little resources to
keep up with new requirements. Bugs are only tackled only
when somethings breaks really bad.

(8.) Quiet work conditions: you don’t have offices, but your
working spaces are fairly quiet, not like the cacophony of an
incubator.

(12.) Hallway testing: you also do a good deal of hallway
usability testing.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

The Big Tech Company team (3/6)

UW CSE 403 Au23 30

You work on a team at one of the big tech companies.
(1.) Source control: not only do you use source control,
your company has its own suite of internal tools for
code reviews, etc., increasing productivity a lot.
(2.) No one-step build: you cannot make the build in
one step - in fact you have a “build manager” rotation
which consumes an engineer’s whole week.
(8.) Open floor plan: you have your own desk,
thankfully, but it's on a floor with a few dozen desks and
it's often a little busy.
(11.) Coding in interviews: coding is the biggest part
of your company’s notoriously difficult interview
process. As a result, not only can you rely on your
coworkers to be technically solid, you frequently learn
from them.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

The Investment Firm team (4/6)

UW CSE 403 Au23 31

You work for a big bank or investment firm. Your team
does in-house modeling and tooling for its investors.

(7.) No spec: leadership is pretty unclear on what they
want you to do, and the software engineers hate writing
documentation, so you frustratingly spend more time
than you’d like working on projects that are ultimately
dropped, or dealing with requirement churn.
(8). Quiet work space: everyone has an office. In fact,
maybe you have too much time away from your team.
(9.) Best tools money can buy: you have your own
office and nice hardware. Cost is not a barrier to access
any software or computing resources.
(10.) Do you have testers: Yes, but they are mostly
focused on higher level issues, like the results of
analysis. Tests aren’t automated.

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

The Trendy Startup team (5/6)
You work for a trendy startup working on
something to do with deep learning, or maybe
blockchain.

(2.) One-click builds and (3.) at-least daily
builds: both use standard continuous integration,
resulting in little to no time wasted on fixing
broken builds.
(5.) Your team doesn’t prioritize fixing bugs
and regularly (6.) doesn’t stick to a set schedule:
you’re frequently meeting with and demoing the
product for series A investors, and management
will prioritize new feature launches ahead of fixing
known bugs.

UW CSE 403 Au23 32

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

The Research Lab team (6/6)
Your team works for a government-contracted research lab.
Your engineering tasks encompass things like big-data biology,
rocket engine simulations, etc.
(4.) No bug database - Your company’s engineering
developed to supplement code written by a principal
researcher without software training, and not tracking bugs is
one result of the lack of formality. You frequently encounter
buggy code but have difficulty institutionally learning from
any of these mistakes.
(7.) Your team uses specs, which helps give direction to the
team’s efforts and avoid wasting time and (8.) things are
pretty quiet - you work in a lab, and there aren’t many
distractions.
(11.) No coding in interviews - the company prioritizes
other technical skills, so while some of your coworkers very
experienced engineers, others on your team (who write code)
are researchers without a lot of programming experience.UW CSE 403 Au23 33

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

And the survey says ….

UW CSE 403 Au23 34

So, what do we think of the Joel test?

UW CSE 403 Au23 35

1. Are these tests valid
2. Which are most/least important
3. Could we argue some are situational

The Joel Test

1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working

conditions?
9. Do you use the best tools money can

buy?
10. Do you do automated testing?
11. Do new candidates write code during

their interview?
12. Do you do hallway usability testing?

The Enterprise Company team (5/8)
You work for a big enterprise software company. You have quarterly
scheduled build releases, follow the Waterfall method, all that.

(3.) No daily builds: and every couple of weeks your team gets
blocked on the build being broken by some bug a dozen commits
ago. You can imagine a lot of time is lost at the whole company this
way…
(6.) Up-to-date schedule: thanks to the company’s structured
releases, your team always knows what to have done, when. Other
teams can count on yours to always hit your deadlines.
(7.) There are specs: Your team is careful to write specs.
(9.) Best tools available: Not really. Because of the companies'
partnerships, you have to stick with the provided tools and it is
really hard to try new ones.

UW CSE 403 Au23 36

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

The Big Non-Tech Company team (8/8)
You work as part of the software team for a big non-
tech company (like a hospital, a retail store chain, etc.)
You have quarterly deadlines for projects, and generally
follow a more traditional business schedule.

(3) No daily builds: you’re on quarterly cycles so you
don’t test the build on any regular schedule.
(7.) Your team works from a spec.
(8.) Has your own offices.
(10) No automated testing: Your company is not
software focused so you don’t have dedicated testers -
but you *do* have stringent correctness requirements.
As a result you have to spend a lot of time manually
testing new features.

UW CSE 403 Au23 37

The Joel Test
1. Do you use source control?
2. Can you make a build in one step?
3. Do you do CI?
4. Do you have a bug database?
5. Do you fix bugs before writing new

code?
6. Do you have an up-to-date

schedule?
7. Do you have a spec?
8. Do programmers have quiet

working conditions?
9. Do you use the best tools money

can buy?
10. Do you do automated testing?
11. Do new candidates write code

during their interview?
12. Do you do hallway usability testing?

