
Software Development
Lifecycles
CSE 403 Software Engineering
Autumn 2023

Today’s Outline

• Quick recap
• Software Engineering
• Project Proposals

• Software development lifecycles (SDLC)
• What and why are they needed
• Recurring themes
• Popular models and their tradeoffs

UW CSE 403 Au23 2

Software Engineering is …

UW CSE 403 Au23 3

“An engineering discipline concerned with all aspects of software production from
the early stages of system specification [requirements] through to maintaining

[evolving] the system after it has gone into use.” — Ian Sommerville

Software Engineering tasks include:
• Requirements engineering
• Specification writing and documentation
• Architecture and design
• Programming
• Testing and debugging
• Deploying, operating, evaluating, refactoring and evolving
• Planning, teamwork and communication

CSE 403 Projects work as learning tools

UW CSE 403 Au23 4

Topic

Project
Milestone
Delivery

Readings
+ In-class
Exercises

Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8 Wk9 Wk10 Wk11

Intro + Lifecycles Reqs Arch CD/CI, Test, Debug Demos IP Double-click topics Demos

Proposal Reqs Arch CD/CI BetaArch Chkpt
Peer-Rev

Final Release

Reflection

Reading1 Reading2 Reading3
Git Db

We are here
Project Proposals

and
Lifecycles

Assignment 1 – Project Proposals

UW CSE 403 Au23 5

An elevator pitch is a brief, persuasive speech that you use to spark interest in a product,
project or idea, or in yourself. An elevator pitch is short, about the time you spend in an

elevator, hence the name.

https://asana.com/resources/elevator-pitch-examples

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

Your turn

UW CSE 403 Au23 6

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

Introduce yourself

Present the problem

Present your solution
(This is your lucky day!)

Share your value proposition

Add a call to action

Try pitching your project, or yourself, to your neighbor

Lifecycles: Here’s the challenge

UW CSE 403 Au23 7

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

Problem
Specification

???

Source Code
Solution

One solution: Code and fix

UW CSE 403 Au23 8

Specification
(maybe)

Deliver
(maybe)

SDLC: Code and fix

UW CSE 403 Au23 9

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly
• Applicable sometimes for small projects, short-lived prototypes, and/or small

teams

Cons:
• <Over to you>

CSE 403, Spring 2006, Alverson

Let’s look at data*

Project
with little
attention
on SDLC
process

The Power of Process | Steve McConnell

Thrashing = doing a
lot of work but not
making progress
towards the goal

Imagine recoding
something again
and again and it’s
still not right for
purpose

CSE 403, Spring 2006, Alverson

Project
with early
attention
to SDLC
process

The Power of Process | Steve McConnell

Let’s look at data*

Is a more structured SDLC necessary?

It’s used to establish an order – provide a model - in which
software project events occur from project conception to project
delivery

• It forces us to think of the “big picture” and follow steps so that
we reach it without glaring deficiencies

• Without it we may make decisions that are individually on target
but collectively misdirected

• It allows us to organize and coordinate our work as a team
• It allows us to track progress and risks, and adjust as necessary

UW CSE 403 Au23 12

Recurring themes in SDLCs

A SDLC defines how to produce software through a series of stages

UW CSE 403 Au23 13

Goals of each stage

• Define a clear set of actions to perform
• Produce tangible (trackable) items
• Allow for work revision
• Plan actions to perform in the next stage

Common stages

• Requirements
• Design
• Implementation
• Testing
• Release
• Maintenance

Today’s Outline
• Quick recap

• Software Engineering
• Project Proposals

• Software development lifecycles (SDLC)
• What and why are they needed
• Recurring themes
• Popular models and their tradeoffs

• Waterfall model
• Evolutionary prototyping
• Spiral model
• Staged delivery
• Agile (XP, Scrum)

UW CSE 403 Au23 14

We are here!

All have the same goal – deliver
high quality software, on time,
meeting the customers needs

SDLC: Waterfall model

• Top-down approach

• Sequential, non-
overlapping activities and
steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Au23 15

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: Waterfall model

• Top-down approach

• Sequential, non-
overlapping activities and
steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Au23 16

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Conceptually very
clean, but what’s

missing?

SDLC: Waterfall model

• Top-down approach

• Sequential, non-
overlapping activities and
steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Au23 17

Requirements

Architecture/Design

Implementation

Verification

Maintenance

In what context
would it work

well?

In what context
would it work

well?

UW CSE 403 Au23 18

Likely parts of their SDLC is
waterfall-like due to the upfront
and regulated requirements

SDLC: Waterfall pros and cons

Pros:
• Simple to understand
• Promotes common dialogue
• Highly regulated deliverables

Cons:
• Hard to do all the planning upfront
• Inflexible – changes are expensive
• Test and integration come late – fixes

are expensive
• Final product may not match the

customer’s needs

UW CSE 403 Au23 19

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: Prototyping

UW CSE 403 Au23 20

• Problem domain or requirements
not well defined or understood

• Create small implementations of
requirements that are least understood

• Requirements are “explored” before the
product is fully developed

• Developers (and customers) gain experience
when developing the product

• Prototype can evolve to the real product or can
serve to be a learning tool only

Prototype

ReviewRefine

SDLC: Prototyping

UW CSE 403 Au23 21

• Problem domain or requirements
not well defined or understood

• Create small implementations of
requirements that are least understood

• Requirements are “explored” before the
product is fully developed

• Developers (and customers) gain experience
when developing the product

• Prototype can evolve to the real product or can
serve to be a learning tool only

Prototype

ReviewRefine

In what context
would it work

well?

In what context
would it work

well?

https://internetdevels.com/blog/what-is-website-prototype-how-build-
website-prototype

https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-desktop

UI prototyping
is popular

SDLC: Prototyping pros and cons

UW CSE 403 Au23 23

Pros:
• Client involvement and early feedback
• Improves requirements and specifications
• Reduces risk of developing the “wrong” product

Cons:
• Time/cost for developing may be high
• Hard to commit what will be delivered and when
• May end up evolving a poor choice (limit thinking

holistically)

Prototype

ReviewRefine

SDLC: Spiral Model

UW CSE 403 Au23

• Incremental/iterative model (combines
waterfall and prototyping)

• Iterations called spirals
• Repeat these activities:

• Determine objectives (reqs)
• Risk analysis
• Develop and test
• Plan

• Phased reduction of risks
(address high risks early)

Boehm, Spiral Development: Experience, Principles,and Refinements

SDLC: Spiral Model

UW CSE 403 Au23

• Incremental/iterative model
(combines the waterfall model and
prototyping)

• Iterations called spirals
• Repeate these activities:

• Determine objectives (reqs)
• Risk analysis
• Develop and test
• Plan

• Phased reduction of risks
(address high risks early)

Boehm, Spiral Development: Experience, Principles,and Refinements

In what context
would it work

well?

In what context
would it work

well?

SDLC: Spiral Model pros and cons

UW CSE 403 Au23

Pros:
• Early indication of unforeseen

problems
• Allows for changes
• The risk reduces as costs increase

Cons:
• More complex to run
• Requires proper risk assessment
• Requires more planning and

experienced management

Boehm, Spiral Development: Experience, Principles,and Refinements

SDLC: Lots of variants 🤯 - Staged Delivery

• Combines waterfall, spiral,
scrum

• Waterfall-like planning
upfront then spiral/scrum-
like short release cycles

• Pros: ?
• Cons: ?

UW CSE 403 Au23 27

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 1: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

McConnell: https://stevemcconnell.com/

SDLC: Staged Delivery pros and cons

• Pros:
• Can ship at the end of any

release cycle
• Intermediate deliveries show

progress, satisfy customers,
and lead to feedback

• Problems are visible early

• Cons:
• Requires tight coordination
• Product must be

decomposable
• Extra releases cause overhead

UW CSE 403 Au23 28

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 1: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

UW CSE 403 Au23 29

Thoughts on which
SDLC to use?

Stay tuned for more!

UW CSE 403 Au23 30

• Truly, there is no end, but we’ll move to the more recent SDLC
next week

• Questions on the traditional models?

