
Refactoring
CSE 403 Software Engineering
Autumn 2023

Today’s Outline
• What’s refactoring
• Why refactor
• When refactor
• How refactor

UW CSE 403 Au23 2

Here’s the problem
Software can live and evolve for months and years, with new
features, new bug [fixes], new algorithms, new developers, new
coding practices, new …

• If the code's structure does not also evolve, it will become harder and
harder to maintain, no less improve

• This can happen even if the code was initially reviewed and well-designed
at the time of check-in

Is there anything wrong with this code?

char b[2][10000],*s,*t=b,*d,*e=b+1,**p;main(int c,char**v)
{int n=atoi(v[1]);strcpy(b,v[2]);while(n--){for(s=t,d=e;*s;s++)
{for(p=v+3;*p;p++)if(**p==*s){strcpy(d,*p+2);d+=strlen(d);
goto x;}*d++=*s;x:}s=t;t=e;e=s;*d++=0;}puts(t);}

while (*a++ = *b--) ;

We can maintain code
Code maintenance: modifying or repairing of code generally
after it has been delivered/deployed

Purposes:
• Fix bugs
• Adapt to environment changes (e.g., performance, load)
• Add and evolve features

Note that maintenance is hard
• It can be harder to maintain code than write your own new code

• “House of cards" phenomenon (don't touch it!)
• Must understand code written by another developer,

or code you wrote at a different time with a different mindset

• Yet maintenance is how developers spend much of their time

• It pays to design software well and plan ahead so that later
maintenance will be less painful (e.g., extensible design)

We can also periodically refactor code
Refactoring: revising the code to improve its internal
structure, reduce complexity, or otherwise accommodate
change without altering its external behavior

Why fix something that isn’t broken?
Each part of a system’s code has 3 purposes:

1. To execute its functionality
2. To allow for evolution
3. To communicate well to developers who read it

If the code does not do one or more of these, it is "broken“ and
needs some investment!

Is adding a
feature or a bug
fix, refactoring?

Pick up on the need-to-refactor signs
Consider refactoring when:
• Code is duplicated
• A routine is too long
• A loop is too long or deeply nested
• A class has poor cohesion
• A class uses too much coupling
• Inconsistent level of abstraction
• Too many parameters
• To compartmentalize changes
• To modify an inheritance hierarchy in parallel
• To group related data into a class
• A "middle man" object doesn't do much
• Spaghetti code

When should
we take time to
refactor?

• Poor encapsulation of data that should be
private

• A weak subclass doesn't use its inherited
functionality

• A class contains unused code

"I don't have time!"

Refactoring incurs an up-front cost.
• Some developers don't want to do it
• Management can have concerns - they lose time and gain "nothing"

(no new features)

But...
• Well-written code is more conducive to rapid development

(some estimates put ROI at 500% or more for well-done code)
• Refactoring is good for programmer morale

• Developers prefer working in a "clean house"

So when should we refactor?

Let’s do some refactoring!

Example 1:
What aspects should

be refactored and
how?

function base(aReading) {...}
function taxableCharge(aReading) {...}
function calculateBaseCharge(aReading) {...}

class Reading {
base() {...}
taxableCharge() {...}
calculateBaseCharge() {...}

}

https://refactoring.com

Example 2:
What aspects should

be refactored and
how?

function foundPerson(people) {
for (let i = 0; i < people.length; i++) {

if (people[i] === "Don") {
return "Don";

}
if (people[i] === "John") {

return "John";
}
if (people[i] === "Kent") {

return "Kent";
}

}
return "";

}

function foundPerson(people) {
const candidates = ["Don", "John", "Kent"];
return people.find(p=>candidates.includes(p)) || ‘’;

}

https://refactoring.com

Is this an
improvement?

UW CSE 403 Au23 16

Class Animal {
static final int TYPE_DOG = 1;
static final int TYPE_CAT = 2;
int type;

void makeSound() {
switch (type) {

case TYPE_DOG:
System.out.println(“woof”);
break;

case TYPE_CAT:
System.out.println(“meow”);
break;

}
}
}

Example 3:
What aspects should

be refactored and
how?

UW CSE 403 Au23

Interface Animal {
void makeSound();

}

Class Dog implements Animal {
@Override
void makeSound() {

System.out.println(“woof”);
}}

Class Cat implements Animal {
@Override
void makeSound() {

System.out.println (“meow”);
}}

https://www.baeldung.com/cs/refactoring

UW CSE 403 Au23 18

Great
resource
by Martin
Fowler

Let’s look
at a few!

There are MANY forms of refactoring
Low Level Refactoring
• Names:

• Renaming (methods, variables)
• Naming (extracting) “magic” constants

• Procedures:
• Extracting code into a method
• Extracting common functionality (including duplicate code) into a

module/method/etc.
• Inlining a method/procedure
• Changing method signatures

• Reordering:
• Splitting one method into several to improve cohesion and readability (by

reducing its size)
• Putting statements that semantically belong together near each other

UW CSE 403 Au23 19

There are MANY forms of refactoring
High level refactoring
• Refactoring design or even architecture

Compared to low-level refactoring, high-level is:
• Not as well-supported by tools
• But can be even more important and valuable

UW CSE 403 Au23 20

Tools, did you say IDE tools?

UW CSE 403 Au23 21

Tools, did you say tools?

UW CSE 403 Au23 22

There are many others!

Modern IDEs support low level refactoring patterns:
• Variable / method / class renaming
• Method or constant extraction
• Extraction of redundant code snippets
• Method signature change
• Extraction of an interface from a type
• Method inlining
• Warnings about method invocations with inconsistent parameters
• Help with self-documenting code through auto-completion

Sadly, older development “environments” (e.g., vi, emacs, etc.)
• Have little or no support for refactoring, and thus offer little

encouragement for the developer

Back to basics
When adding some new functionality, in what order
would you do the following?

Refactor the code

Make the necessary
code changes

Write unit tests to ensure that
the important conditions that
need to be met are indeed met

pollev.com/cse403au

UW CSE 403 Au23 25

UW CSE 403 Au23 26

UW CSE 403 Au23 27

UW CSE 403 Au23 28

Back to basics
When adding some new functionality, in what order
would you do the following?

Refactor the code

Make the necessary
code changes

Write unit tests to ensure that
the important (existing) conditions that

need to be met are indeed met
It can depend on
the development

process you’re
using

Back to basics
When adding some new functionality, in what order
would you do the following?

Write unit tests to ensure that
the important (new) conditions that

need to be met are indeed met

Write
test

Write
code to

pass test

Refactor
code

Refactor the code

Make the necessary
code changes

Test driven
development

Refactoring in six steps

1. Analyze the code to decide the risk/reward of refactoring
2. Check in the code before you change it
3. Write unit tests that verify the code's external correctness
4. Refactor the code and ensure the tests still pass!
5. Code review the changes
6. Check in the refactored code (and only the refactor)

To summarize - top reasons for refactoring

Improve maintainability, which is the ability to
• Fix bugs
• Adapt to environment changes (e.g., performance, load)
• Add and evolve features

and hence, improve productivity!

It’s [almost] a wrap!

What’s left:
• Final release milestone and demo

• Don’t forget to signup for a presentation slot (see Ed for link)!
• Individual retrospective milestone
• Team member survey

