
CSE 403 Software Engineering
More Testing
Autumn 2023

Today’s outline

Software testing
• Code coverage
• Integration and integration testing

UW CSE 403 Au23 2

Jumping into a demo – calculator module

UW CSE 403 Au23 3

Scenario
• You’ve inherited responsibility for some code
• There is a test suite! Woohoo!
• But you don’t know how well the tests cover

the code / how adequate they are
• So you’ll run coverage analysis to provide

some insights

GNU’s gcov is an available option

UW CSE 403 Au23 4

How gcov works (Medium.com)

calculator.c
test_calculator.c

report
visualizer

UW CSE 403 Au23 5

Intro to gcov demo

Link to CI in github

Code coverage metrics

code coverage testing: examines what fraction of the code under
test is reached by existing unit tests

Structural code coverage metrics include:
• Statement coverage (what we looked at with gcov)
• Condition coverage
• Decision coverage

Which type of
coverage

requires the
most tests?

Structural code coverage: the basics

Average of
the absolute
values of an
array of
doubles

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException(“Nums cannot be null or empty!");
}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}
return sum/numbers.length;

}

Create the control flow graph
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

And align the two to help identify tests
public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException(“Numbers must not be null or empty!");
}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}
return sum/numbers.length;

}

Statement coverage
Every statement in the program must be executed at least once
by the tests

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

In the control flow graph,
this is equivalent to node
coverage

Condition and decision coverage
Condition: a boolean expression that cannot be decomposed into simpler
boolean expressions (e.g., an atomic boolean expression)

Decision: a boolean expression that is composed of conditions, using 0 or
more logical connectors (a decision with 0 logical connectors is a condition)

Quiz:
If (a | b) { …}

What are a and b?
What is the boolean expression (a | b)?

Condition coverage

Condition: a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic)

Condition coverage: every condition in the program must
take on all possible outcomes (true/false) at least once

Condition coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

Decision coverage

Decision: a boolean expression that is composed of conditions,
using 0 or more logical connectors

Decision coverage: every decision in the program must take
on all possible outcomes (true/false) at least once

Decision coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

In the control flow graph,
this is equivalent to edge
coverage

There is a concept of “subsumption”

UW CSE 403 Au23 17

Given two coverage metrics A and B,
A subsumes B if and only if satisfying A implies satisfying B

• Subsumption relationships (true or false):
1. Does statement coverage subsume decision coverage?

2. Does decision coverage subsume statement coverage?

3. Does decision coverage subsume condition coverage?

4. Does condition coverage subsume decision coverage?

https://pollev.com/cse403au

UW CSE 403 Au23 18

UW CSE 403 Au23 19

UW CSE 403 Au23 20

UW CSE 403 Au23 21

UW CSE 403 Au23 22

And the experts say…

UW CSE 403 Au23 23

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

• Subsumption relationships :
1. Statement coverage does not subsume decision coverage
2. Decision coverage subsumes statement coverage
3. Decision coverage does not subsume condition coverage
4. Condition coverage does not subsume decision coverage

Decision subsumes Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

Decision and Condition – neither subsumes the other

UW CSE 403 Au23 25

4 possible tests for the
decision:

1. a = 0, b = 0

2. a = 0, b = 1

3. a = 1, b = 0

4. a = 1, b = 1

a | bba

000

110

101

111

a | bba

000

110

101

111

These two satisfy
condition coverage but
not decision coverage

These two satisfy
decision coverage but

not condition coverage

If (a | b) { …}

Code coverage takeaways

• Code coverage can provide valuable insights into your
code and into your testing adequacy

• It is intuitive to interpret
• There are great tools available to help compute code

coverage of your tests
• Code coverage itself is not sufficient to ensure correctness
• Code coverage is well known and used in industry

UW CSE 403 Au23 27

More details:
https://homes.cs.washington.edu/~rjust/publ/google_coverage_fse_2019.pdf

Visualization tools are
built on top of code

instrumentation tools

Layered architecture!

Code coverage at

Back to our four categories of testing

1. Unit Testing
• Does each module do what it is supposed to do in isolation?

2. Integration Testing
• Do you get the expected results when the parts are put together?

3. Validation Testing
• Does the program satisfy the requirements?

4. System Testing
• Does the program work as a whole and within the overall environment?

(includes full integration, performance, scale, etc.)

Start with plain, “integration”
Integration: combining 2 or more software units and getting
the expected results

Why do we care about integration?
• New problems will inevitably surface

• Many modules are now together that have never been
together before

• If done poorly, all problems will present themselves at once
• This can be hard to diagnose, debug, fix

• There can be a cascade of interdependencies
• Cannot find and solve problems one-at-a-time

“To go where no man
has gone before…”

What do you think of phased integration

Phased ("big-bang") integration:
• Design, code, test, debug each class/unit/subsystem separately
• Combine them all
• Hope for the best

This Photo by Unknown Author is licensed under CC BY-NC-ND

In contrast to incremental integration

Incremental integration:
• Repeat

• Design, code, test, debug a new
component

• Integrate this component with another
(a larger part of the system)

• Test the combination

• Can start with a functional "skeleton"
system (e.g., zero feature release)

• And incrementally “flesh it out”

Is it obvious which is more successful?

• Incremental integration benefits:
• Errors easier to isolate, find, fix

• reduces developer bug-fixing load
• System is always in a (relatively) working state

• good for customer, developer morale

• But it isn’t without challenges:
• May need to create "stub" versions of some features that aren’t

yet available

What’s a stub?

Stub: a controllable replacement for a software unit

• Useful for simulating difficult-to-control elements, e.g.,
• network / internet
• database
• files

• Useful for simulating components not yet developed

Stub it in
Stub it out

There are different ways to approach integration

Top-down integration:

Start with outer UI layers and work inward
• Must write (lots of) lower level stubs for UI to interact with
• Allows postponing tough design/implementation decisions (
• bad?)

Steve McConnel, Code Complete 2

Or bottom-up

Bottom-up integration:

Start with low-level data/logic layers and work outward
• Must write upper level stubs to drive these layers
• Won't discover high-level / UI design flaws until late

Top down, bottom up or “sandwich" integration?
“Sandwich" integration by fleshing out a skeleton system:

Connect top-level UI with crucial bottom-level components
• Add middle layers incrementally
• More common and agile approach Consider starting

with a skeleton
implementation
for your project

Onto integration testing

Integration testing: verifying software quality by testing two or
more dependent software modules as a group

Can be quite challenging as:
• Combined units can fail in more places and in more complicated ways
• Must use stubs to "rig" behavior if not all pieces yet exist OR

• if you want to simplify problematic components to debug more
gradually

How to create a stub, step 1
1. Identify the dependency

a) This is either a resource or a class/object that is challenging or not
yet written

b) If it isn't an object, wrap it up into one

Goal: Test class A

Create Class B to represent
the challenging/missing
dependency (as needed)

Class A depends on Class B

How to create a stub, step 2
2. Extract the core functionality of the object

into an interface

Create a stub InterfaceB based on B

Update A's code to work with type
InterfaceB, not B

B
interface
object

Original B

Create a stub, step 3
3. Write a second "stub" class that also

implements the interface,
but returns pre-determined fake data

Now A's dependency on B is
dodged and can be tested
easily

Can focus on how well A
integrates with B's expected
behavior

Stub

B
interface
object

Inject the stub, step 4

So cool! Where inject the stub in the code so Class A will reference it?
• At construction

apple = new A(new StubB());

• Through a getter/setter method
apple.setResource(new StubB());

• Just before usage, as a parameter
apple.methodThatUsesB(new StubB());

Think about how to minimize code changes when you no longer
depend on the stub

That’s a wrap (for now) – testing takeaways
• Testing matters!!!

• Test early, test often
• Bugs become well-hidden beyond the unit in

which they occur

• Don't confuse volume with quality of test data
• Can lose relevant cases in mass of irrelevant

ones
• Look for revealing subdomains (“characteristic

tests”)

• Choose test data to cover:
• Specification (black box testing)
• Code (white box testing)

• Testing can't generally prove absence of bugs
• But it can increase quality and confidence

Appendix – Mock objects for integration testing

UW CSE 403 Au23 43

Mock objects
Mock vs stub objects
Thanks to Marty Stepp, previous UW CSE 403 instructor, for providing
this and an earlier version of the integration testing material

"Mock" objects

mock object: a fake object that decides whether a unit test has
passed or failed by watching interactions between objects

• useful for interaction testing (as opposed to state testing)

Stubs vs. mocks

• A stub gives out data that goes to
the object/class under test.

• The unit test directly asserts against
class under test, to make sure it gives
the right result when fed this data.

• A mock waits to be called by
the class under test (A).

• Maybe it has several methods
it expects that A should call.

• It makes sure that it was contacted
in exactly the right way.

• If A interacts with B the way it should, the test passes.

Mock object frameworks

• Stubs are often best created by hand/IDE.
Mocks are tedious to create manually.

• Mock object frameworks help with the process.
• android-mock, EasyMock, jMock (Java)
• FlexMock / Mocha (Ruby)
• SimpleTest / PHPUnit (PHP)
• ...

• Frameworks provide the following:
• auto-generation of mock objects that implement a given interface
• logging of what calls are performed on the mock objects
• methods/primitives for declaring and asserting your expectations

Using stubs/mocks together

• Suppose a log analyzer reads from a web service.
If the web fails to log an error, the analyzer must send email.

• How to test to ensure that this behavior is occurring?

• Set up a stub for the web service that intentionally fails.
• Set up a mock for the email service that checks to see whether

the analyzer contacts it to send an email message.

