
CSE 403 Software Engineering
Testing
Autumn 2023

Project document tips

Celebrate your brand – include a title in your doc
Make your content count – remove the assignment instructions

Today’s outline

Software testing
• Motivating examples
• Categories of tests
• Double click on unit testing

UW CSE 403 Au23 2

UW CSE 403 Au23 3

Could better testing have helped …

Therac-25 radiation therapy machine (1985-87)

• Device to create high energy beams to destroy tumors with
minimal impact on surrounding healthy tissue

• Caused excessive radiation in some situations
• What happened?

– An update removed hardware interlocks that prevented the
electron-beam from operating in its high-energy mode.
So all the safety checks were done in the software.

– The software set a flag variable by incrementing it.
Occasionally an arithmetic overflow occurred, causing the
software to bypass safety checks.

– The equipment control task did not properly synchronize
with the operator interface task, so that race conditions
occurred if the operator changed the setup too quickly.

– And more …
Therac-25 - Wikipedia

Cost of bugs: (at least) death
in 6 patients

Ariane 5 rocket (1996)

• European heavy-lift space launch vehicle - self-destructed 37 seconds after launch
• What happened?

• A control software bug went undetected –
• Conversion from 64-bit floating point to 16-bit signed integer caused an exception
• Floating-point number was larger than 32767 (max 16-bit signed integer), overflow

– Efficiency considerations had led to the disabling of the exception handler
– Program crashed rocket crashed

Cost of
program:
over
€1 billion

Ariane 5 - Wikipedia

Mars Polar Lander (1999)

• NASA robotic spacecraft, created to study the
soil and climate of a region on Mars

• After descent phase, lander failed to
reestablish communication with Earth

• What (most likely) happened?
• Sensor signal falsely indicated that the craft had

touched down when it was 130-feet above the
surface and the descent engines to shut down
prematurely

• The error was traced to a single bad line of
software code

Mars Polar Lander - Wikipedia

Cost of program:
$165 million

WannaCry Ransomware Attack (2017)

• Cryptoworm infecting computers, encrypting their
data, and demanding ransom payments

• Estimated to have affected more than 200,000
computers across 150 countries

• What happened?
• WannaCry exploited a bug in the Server Message

Block (SMB) protocol
• MSFT provided a security-patch earlier but many

customers hadn’t installed it yet

WannaCry ransomware attack - Wikipedia

Cost of exploit:
100s of millions
to billions of $

NHS - 70,000
hospital devices
were impacted

UW CSE 403 Au23 8

It’s important – at times, critically important -
to release quality software

Examples showed particularly costly errors
but every error adds up

Many of the most common and impactful
bugs can be caught with testing

UW CSE 403 Au23 9

UW CSE 403 Au23 10

UW CSE 403 Au23 11

2023 CWE Top 25 Most
Dangerous Software
Weaknesses (mitre.org)

Bugs identified as root cause of
reported vulnerabilities
NVD - Home (nist.gov)

And the
data says …

So let’s test! Four categories of testing

1. Unit Testing
• Does each module do what it is supposed to do in isolation?

2. Integration Testing
• Do you get the expected results when the parts are put together?

3. Validation Testing
• Does the program satisfy the requirements?

4. System Testing
• Does the program work as a whole and within the overall environment?

(includes full integration, performance, scale, etc.)

What are other common testing terms?

• Regression testing
• Black box, white box testing
• Code coverage testing
• Boundary case testing
• Test-driven development
• Mutation testing
• Fuzzy testing
• Performance testing
• Usability testing
• Acceptance testing

Let’s see if we can name at least 10:

Regression testing

• Whenever you find a bug
• Store the input that triggered that bug, plus the correct output
• Add these to the test suite
• Verify that the test suite fails
• Fix the bug
• Verify the fix

• Ensures that your fix solves the problem
• Helps to populate test suite with good tests
• Protects against reversions that reintroduce bug

• It happened at least once, and it might will happen again

Fool me once, shame on you
Fool me twice, shame on me

Proverb

Time out: How else can we build in quality?

What can we do beyond testing?
Hint: build in quality from the start

• Good architecture, design and planning
• Coding style guides
• Code reviews/walkthroughs
• Atomic commits
• Pair programming
• …

Today’s outline

Software testing
• Motivating examples
• Categories of tests
• Double click on unit testing

• Black box testing
• Boundary case testing
• Test driven development

• White box testing
• Static code analysis
• Code coverage testing

UW CSE 403 Au23 16

Unit Testing
Test that a

method/class/module
behaves as specified

We are here

Starting at the top

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code

Examines the module/system internals
Trace data flow directly

Bug report contains more detail on source of defect

Black-box testing

• Black-box is based on requirements and functionality, not code

• Tester may have actually seen the code before ("gray box")
• But doesn't look at it while constructing the tests

• Often done from the end user or client's perspective

• Emphasis on parameters, inputs/outputs (and their validity)

Black box: boundary case testing
Boundary case testing:

• What: test edge conditions

• Why?
• #1 and #7 Most Dangerous Software Weakness!
• Likely source of programmer errors (< vs. <=, etc.)
• Requirement specs may be fuzzy about behavior on boundaries
• Often uncovers internal hidden limits in code

• Example: array list must resize its internal array when it fills capacity

Black box: boundary case example #1
• Write test cases based on paths through the specification

• int find(int[] a, int value) throws Missing
// returns: the smallest i such that a[i] == value
// throws: Missing if value not in a[]

• Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

• Have we captured all the paths?
([4, 5, 5], 5) => 1

Boundary case #2
<E> void appendList(List<E> src, List<E> dest) {

// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case?

Boundary case #2 (aliases)
<E> void appendList(List<E> src, List<E> dest) {

// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case? Consider if src and dest
are the same object

Testing aliasing is a
good test!

Boundary case #3

public int abs(int x)
// returns: |x|

• What are some values or ranges of x that might be worth probing?
• x < 0, x ≥ 0
• x = 0 (boundary condition)
• Specific tests: say x = -1, 0, 1

Boundary case #3 (arithmetic overflow)
public int abs(int x)
// returns: |x|

• What are some values or ranges of x that might be worth probing?
• x < 0, x ≥ 0
• x = 0 (boundary condition)
• Specific tests: say x = -1, 0, 1

• How about…
int x = -2147483648; // this is Integer.MIN_VALUE
System.out.println(x<0); // true
System.out.println(Math.abs(x)<0); // also true!

Javadoc on abs says … if the argument is equal to the value of Integer.MIN_VALUE, the most
negative representable int value, the result is that same value, which is negative

There are a lot of possible inputs!
• Consider input subdomains

• Identify input sets with same behavior
• Try one input from each set

• “Same” behavior depends on specification
• Say that program has “same behavior” on two inputs if

1) gives correct result on both, or
2) gives incorrect result on both

• A subdomain is a subset of possible inputs
Subdomain is revealing for an error, E, if
1) Each element has same behavior
2) If program has error E, it is revealed by test

Goal is to divide possible inputs into sets of revealing subdomains for
various errors

Boundary case testing heuristic
• Create tests at the boundaries of subdomains

• Catches common boundary case bugs:
• Arithmetic

• Smallest/largest values
• Zero

• Objects
• Null
• Circular
• Same object passed to multiple arguments (aliasing)

Black box: test driven development
Test driven development (TDD):

• What:
• Test based on the spec and developed before

the code is written
• Will fail initially
• Write just enough code to make it pass!

• Why?
• (Reported) significantly less defect rate
• Improved understanding of requirements and

ability to influence design

Write
test

Write
code to

pass test

Refactor
code

Let’s try it out with this avgAbs spec

TDD – what tests need to pass in order for us to sign off on the coding?

UW CSE 403 Au23 28

double avgAbs(double ... numbers)
// Average of the absolute values of an array of doubles

• assertEquals(2.0, avgAbs({1.0, 2.0, 3.0}));
• assertEquals(2.0, avgAbs({1.0, -2.0, 3.0}));
• assertEquals(2.0, avgAbs({2.0}));
• …

Let’s try it out with this date spec

TDD – what tests need to pass in order for us to sign off on the coding?
TDD can result in a lot of tests!
• Develop tests now (TDD) or later – need to be judicious in which to write

UW CSE 403 Au23 29

class Date
• Date(int yyyy, int mm, int dd)

// Creates date dd/mm/yyyy
• boolean after(Date date1, Date date2)

// Tests if date1 is after date2
• Date subtractWeeks(Date date1, int numWks)

// Subtracts numWks from date1

Moving on to white box testing

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code

Examines the module/system internals
Trace data flow directly

Bug report contains more detail on source of defect

White (clear, glass) box testing
• Ultimate goal:

For test suite to cover (execute) all code of the program

• Assumption:
High code coverage correlates with improved quality

• Focus:
Features not described by specification, e.g.,
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

Static code analysis is
one type of white-box

testing
(Monday’s “build” class)

Test suite code coverage
is another
(today!)

Here’s a motivating example for WB testing

boolean[] primeTable = new boolean[CACHE_SIZE];
boolean isPrime(int x) {

if (x>CACHE_SIZE) {
for (int i=2; i<x/2; i++) {

if (x%i==0) return false;
}
return true;

} else {
return primeTable[x];

}
}

Consider an important transition around x = CACHE_SIZE

White box testing has advantages
• Greater confidence in code quality

• Correlating to greater amount of code covered by tests
• If tests cover all of the code in the program, are you confident it’s error free?

• Insight into test cases
• Which tests are likely to yield new information (and should be written)

• Can surface an important class of boundaries
• Consider CACHE_SIZE
• Need to check numbers on each side of CACHE_SIZE

• CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1
• If CACHE_SIZE is mutable, we may need to test with different CACHE_SIZE’s

What about
challenges?

Double click on code coverage testing

code coverage testing: Examines what fraction of the code under
test is reached by existing unit tests

• statement coverage - tries to reach every line (practical?)

• path coverage - follow every distinct branch through code

• condition coverage - every condition that leads to a branch

• function coverage - treat every behavior / end goal separately

Dead code? A distraction? Or important?

Consider tests to cover all paths for the Date class

Consider tests to cover all paths for the Date class

Monday we’ll try
using a code
coverage tool
together

How much coverage is enough? 100%?
May be subject to the law of diminishing returns … shoot for 80%

Good resource on code coverage and code coverage tools:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
And a good list of coverage tools:
https://www.browserstack.com/guide/code-coverage-tools

Ending today with some Rules of Testing
• First rule of testing: Do it early and do it often

Best to catch bugs soon, before they have a chance to hide
Automate, automate, automate the process

• Second rule of testing: Be systematic
If you randomly thrash, bugs will hide until you're gone
Writing tests is a good way to understand the spec

Think about revealing domains and boundary cases
If the spec is confusing, write more tests

Spec can be buggy too
If you find incorrect, incomplete, ambiguous, and missing corner cases, fix it!

When you find a bug, fix it + write a regression test for it

