
CSE 403 Software Engineering
Build systems & Continuous Integration and
Deployment
Autumn 2023

We are moving through the SDLC components

UW CSE 403 Au23 2

Topic

Project
Milestone
Delivery

Readings
+ In-class
Exercises

Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8 Wk9 Wk10 Wk11

Intro + Lifecycles Reqs Arch CI/CD, Test, Debug Demos IP Double-click topics Demos

Proposal Reqs Arch CI/CD BetaArch Chkpt
Peer-Rev

Final Release

Reflection

Reading1 Reading2 Reading3
Git Db

We are here
Build, CI/CD

Today’s outline

• Build systems
• Continuous integration and deployment systems

• What are these
• How do they relate
• Best practices
• Ideas to explore for your projects

UW CSE 403 Au23 3

Assignment 3:
Git, Testing, and

Continuous
Integration

+
Reading Reflection 2

Due 10/31

4

The code is written … now what?

● Get the source code
● Install dependencies
● Run static analysis
● Compile the code
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!
● Operate, monitor, repeat

What does a developer do?

5

The code is written … now what?

● Get the source code
● Install dependencies
● Run static analysis
● Compile the code
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!
● Operate, monitor, repeat

What does a developer do?

Which of these tasks should
be handled manually?

6

The code is written … now what?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship
● Operate, monitor, repeat

What does a developer do?

Which of these tasks should
be handled manually?

NONE!

Instead, orchestrate with a tool
• Build system: a tool for automating compilation and related tasks
• Is a component of a continuous integration/deployment system as today

we automate more than just the build step of producing shippable software

UW CSE 403 Au23 7

 Get the source code
 Install dependencies
 Run static analysis
 Compile the code
 Generate documentation
 Run tests
 Create artifacts for customers
 Ship!
 Operate, Monitor, Repeat

Adding to our SE best practices list

• Automate, automate, automate everything!

• Always use a build tool (one-step build) 

• Use a CI tool to build and test your code on every
commit

• Don’t depend on anything that’s not in the build file
• Don’t break the build!

UW CSE 403 Au23 8

So how can a build system help us?

1. Dependency management
1. Identifies dependencies between files (including externals)
2. Runs the compiles in the right order to pick up the right dependencies
3. Only runs the compiles needed due to dependency changes

2. Efficiency and reliability
1. Automates the build process so that new and old team members, even

working in different dev environments, can move quickly from
development to shipping code

2. Eliminates the chance of missing steps due to tribal knowledge and/or
simply errors

UW CSE 403 Au23 9

Let’s focus on dependency management

UW CSE 403 Au23 10

Simple example:

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

11

compile
Main

compile
Lib

run
libtest

run
system
test

Build systems: dependencies between tasks

What are the
dependencies
between these

tasks?
And why do I care?

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

UW CSE 403 Au23

12

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

UW CSE 403 Au23

13

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

UW CSE 403 Au23

14

compile
Main

compile
Lib

run lib
test

run
system
test

In what order
should we run
these tasks?

Build systems: dependencies between tasks

15

Large projects have thousands of tasks
• Dependencies between tasks form a directed acyclic graph
• Build tools use a topological sort to create an order to compiles

• Order nodes such that all dependencies are satisfied
• Implemented by computing indegree (number of incoming edges) for each node
• No dependencies go first and open door to the others
• See Appendix for example

External code (libraries) also can be complex
• Build systems can manage these dependencies as well!

Build systems can determine task order

UW CSE 403 Au23

Let’s focus on efficiency and reliability

UW CSE 403 Au23 16

Actually, I think we understand these 

So, let’s focus on the opportunity for static analysis BEFORE
the compile step

Examples:
• Credential scan
• Date scan
• Sensitive data scan

What might be
others?

Is this
worthwhile?

Build systems: opportunity for static analysis

UW CSE 403 Au23 17

Could these types of static analysis
tools be run earlier than build?

Here’s an example build system ‘input’

UW CSE 403 Au23 18

Basic-Stats
“ant”

build.xml

(from Monday’s in-class
exercise)

Simple-C
“make”

Makefile

Assignment: evaluate and select a build system

UW CSE 403 Au23 19

JAVA+

Open-source successor to ant and mavengradle

Open-source version of Google’s internal build tool (blaze)bazel

PYTHON

Implements standards from the Python standard (uses TOML
files, has PIP integration)

hatch

Packaging and dependence managerpoetry

Automate and standardize testingtox

JAVASCRIPT

Standard package/task manager for Node, "Largest software
registry in the world."

npm

Module bundler for modern JavaScript applicationswebpack

Tries to improve dependency and packinggulp

Many
other

options!

Over to
you to

research

Today’s outline

• Build systems
• Continuous integration and deployment systems

• What are these and
• How do they relate
• Best practices
• Ideas to explore for your projects

UW CSE 403 Au23 20

We are here

21

CI/CD: What’s the difference?

Continuous Integration (CI)
• Devs regularly integrate code into a shared repository
• System builds/tests automatically with each update
• Complements local developer workflows (e.g., may run diff tests)
• Goal: to find/address bugs quicker, improve quality, reduce time to

get to working code

Continuous Deployment (CD) [Continuous Delivery]
• Builds on top of CI
• Automatically pushes changes to [staging environment and then]

production
• Goal: always have a deployment-ready build that has passed

through a standardized testing process

https://aws.amazon.com/devops/what-is-devops/UW CSE 403 Au23

22

Just like build, there are many CI tool options

Assignment: Research, evaluate
and choose a CI system

UW CSE 403 Au23

23

Continuous integration basics
• A CI workflow is triggered when an event occurs in your [shared] repo

• Example events
• Push
• Pull request
• Issue creation

• A workflow contains jobs that run in a defined order
• A job is like a shell-script and can have multiple steps
• Jobs run in their own vm/container called a runner
• Example jobs

• Run static analysis
• Build, test
• Deploy to test, deploy to prod

Using GitHub CI
terminology but
concepts span

other CI systems

https://docs.github.com/en/actions

UW CSE 403 Au23

24

CI basics (w/ GitHub CI)

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

What SW architecture is
this using?

Actions are common
github tasks – leverage
those built-in or created
by others (e.g., checkout)

UW CSE 403 Au23

Let’s try writing our own simple workflow

Follow along at:
https://github.com/alv880/UW-CSE403-Au23-Projects

Nice light starter tutorial – Automation Step by Step:
https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

UW CSE 403 Au23 25

26

Example: CI at work at UW

UW CSE 403 Au23

Lab In The Wild
is a research
project drawing
survey input
from diverse
community

– Nigini Oliveira
researcher and
403 prof too
provided this
example

27

Example: CI with Github actions

28UW CSE 403 Au23

Example: CI with Github actions

Code reuse with
established “actions”

Trigger

Workflow name

Linux OS environment

One command to run test suite

Unit tests are triggered
on every push of new

code

Continuous delivery/deployment basics

UW CSE 403 Au23 29What is Continuous Delivery? – Amazon Web Services

Staging before Production is very
typical of industry practices

Why would you not always
automatically deploy?

30

Example: CD with GitHub Pages

Spring ‘23 class
hosted their
403 class
website on
GitHub pages

Used CD so
that updates
triggered
publishing the
website update

31

Example: CD configuration

32

Example: CD configuration

Build, CI - Remember these best practices

• Automate, automate, automate
everything!

• Always use a build tool (one-step
build)

• Use a CI tool to build and test your
code on every commit

• Don’t depend on anything that’s not
in the build file

• Don’t break the build!

UW CSE 403 Au23 33

Appendix - Topological sort example

UW CSE 403 Au23 34

35

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: topological sort

What’s the indegree of each node?

36

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Build systems: topological sort

37

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Build systems: topological sort

38

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Build systems: topological sort

39

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

40

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

41

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Which is preferable?

Build systems: topological sort

