
Version Control and Git
CSE 403 Software Engineering
Autumn 2023

Today’s Outline

1. Version control: why, what, how?
2. Git: basic concepts

Monday
Bring your laptop – in-class exercise with git, due by EOD Monday
• Can use attu or set up your own git/ant environment (for ant info, see: Files on Canvas -

https://canvas.uw.edu/files/110888982/download?download_frd=1)

UW CSE 403 Au23 2

Why use version control

UW CSE 403 Au23 3

11:51pm

Why use version control

UW CSE 403 Au23 4

11:51pm 11:57pm

Why use version control – backup/restore

UW CSE 403 Au23 5

11:51pm 11:57pm 11:58pm 11:59pm

❌

Why use version control – teamwork

UW CSE 403 Au23 6

Who is going to make sense of this mess?

Version control

Version control records changes to a set of files over time
This makes it easy to review or obtain a specific version (later)

UW CSE 403 Au23 7

Who uses version control?

Example application domains
• Software development
• Hardware development
• Research (infrastructure and data)
• Applications (e.g., (cloud-based) services)
• Services that manage artifacts (e.g., legal, accounting, business, …)

Maybe a better question is, is there any domain that doesn’t use
version control to manage their assets?

UW CSE 403 Au23 8

Centralized version control

One central repository

• All users commit their changes to a
central repository

• Each user has a working copy
• As soon as they commit, the

repository gets updated
• Examples: SVN (Subversion), CVS

UW CSE 403 Au23 9

Distributed version control

UW CSE 403 Au23 10

Multiple copies of a repository

• Each user commits to a local
(private) repository

• All committed changes remain local
unless pushed to another
repository

• No external changes are visible
unless pulled from another
repository

• Examples: Git, Hg (Mercurial)

Distributed version control

UW CSE 403 Au23 11

❌

Multiple copies of a repository

• Each user commits to a local
(private) repository

• All committed changes remain local
unless pushed to another
repository

• No external changes are visible
unless pulled from another
repository

• Examples: Git, Hg (Mercurial)

Version control with Git

UW CSE 403 Au23 12

Linus Torvalds - Wikipedia

Linux

Wait, wait, wait … what?

UW CSE 403 Au23 13

Nice tutorial!
Git, GitHub, & GitHub Desktop

https://www.youtube.com/watch?v=8Dd7KRpKeaE

Git command line

A little quiz - https://tinyurl.com/uwcse403

UW CSE 403 Au23 14

A little quiz - https://tinyurl.com/uwcse403-2

UW CSE 403 Au23 15

Branch
vs
Fork
vs
Clone

UW CSE 403 Au23 16

Branches

UW CSE 403 Au23 17

• Git has a basic concept of a branch
• There is one main development branch (also known of as “master” branch)
• You should always be able to ship “working software” from main

MAIN
Branch

Commit point
Represents a sequence of commits

Branches

UW CSE 403 Au23 18

• To develop a feature, add a new branch
• And then later merge it with Main
• Lightweight, as (conceptually) branching simply copies a pointer

to the commit history
• Why is this a good practice?

MAIN
Branch

Feature
Branch

Merge point
Branch software merged with Main

Branches

UW CSE 403 Au23 19

MAIN
Branch

Feature
Branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps Main always working and allows for parallel development

Hot fix

Branches

UW CSE 403 Au23 20

MAIN
Branch

Feature
Branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps Main always working and allows for parallel development

Hot fix

Branches

UW CSE 403 Au23 21

• To develop a feature or bug fix, add a new branch
• Why? Keeps Main always working and allows for parallel^2 development

MAIN
Branch

Feature
Branch1

Feature
Branch2

Hot fix

Cloning

UW CSE 403 Au23 22

Clone
(full-related copy – often on remote (local) host)

• When you clone a repo you are creating a local copy on your computer that
you can sync with the remote

• Ideal for contributing directly to a repo alongside other developers

GitHub
• Can use all git

commands to
commit back to
remote repo

Forking (github concept)

UW CSE 403 Au23 23

• Creates a complete independent copy of the repository (project)
• Allows you to evolve the repo without impacting the original
• If original repo goes away, forked repo will still exist

Fork
(full independent copy)

• It’s possible to update the original but only with pull requests (original
owner approves or not)

GitHub

Which would you choose?

UW CSE 403 Au23 24

Branch (parallel dev), fork (in github), or clone (to remote machine)?

CSE403 Class GitHub Repo
Holds course materials used year over year

1. Fix the bugs in the in-class assignment-1
2. Create instance for working on my laptop
3. Create instance for CSE413 to leverage structure of CSE403
4. Create area for Au23 specific material

Merge
conflicts

UW CSE 403 Au23 25

Merge conflicts

UW CSE 403 Au23 26

• Conflicts arise when two users change the same line of a file
• When a conflict arises, the last committer needs to resolve it
• How could you avoid merge conflicts?

Merge conflicts

UW CSE 403 Au23 27

How to avoid minimize merge conflicts?

• Clear separation of responsibilities 🫡
• Frequent code synchronization (pull and push) 🤓
• Good code componentization 🥰
• Atomic commits 🥳

Merge vs
Rebase

UW CSE 403 Au23 28

Merge vs Rebase

UW CSE 403 Au23 29

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

UW CSE 403 Au23 30

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes into main)

UW CSE 403 Au23 31

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (best practices do both)

UW CSE 403 Au23 32

1. Integrate changes from Main to your branch to make sure no
intermediate changes in Main have broken your code

2. Merge your branch to Main
3. Not perfect but decreases risk of breaking the build

then

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase

UW CSE 403 Au23 33

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase

UW CSE 403 Au23 34

• Rebase moves the
entire feature
branch to begin
at the tip of the
main branch

• It re-writes
history by
creating new
commits, now in
the main branch

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase – why rebase?

UW CSE 403 Au23 35

What’s a benefit of
rebase?
• Clean linear history
• Easier debugging

What’s a risk?
• Losing some

commit history
• Others may be

working on copy of
original tree -
painful for them to
sync/merge! https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (use to rewrite commits)

UW CSE 403 Au23 36

• Can rewrite
commits as they
move to the main
branch

Change commit
message

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (use to squash)

UW CSE 403 Au23 37

Squash commits
into a single commit

• Squash combines commits

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (squash and merge)

38

• Can combine commits
before a merge, too!

• Not uncommon to doSquash commits
into a single commit

UW CSE 403 Au23

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Github has standard
options for these
useful operations

UW CSE 403 Au23 39

Rebase: a powerful tool, but …

UW CSE 403 Au23 40

• Results in a sequential linear commit history
• Interactive rebasing often used to squash commits
• Rebase changes the commit history

Do not rebase public branches in general
(especially not with a force-push!)

Rebase: a powerful tool, but …

UW CSE 403 Au23 41

Everyone else’s
main branch

Your main
branch

UW CSE 403 Au23

More resources

42

Git concepts and commands (cheatsheets):
• https://training.github.com/downloads/github-git-cheat-

sheet/
• https://wac-cdn.atlassian.com/dam/jcr:e7e22f25-bba2-

4ef1-a197-53f46b6df4a5/SWTM-2088_Atlassian-Git-
Cheatsheet.pdf?cdnVersion=1272

Github concepts and flows:
• https://githubtraining.github.io/training-manual
• https://www.atlassian.com/git/tutorials/

Motivating Example: What is this Git command?

UW CSE 403 Au23 43

NAME
git-______ - ______ file contents to the index

SYNOPSIS
git ______ [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]

DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically ______s the
current content of existing paths as a whole, but with some options it can also
be used to ______ content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

Motivating Example: What is this Git command?

UW CSE 403 Au23 44

NAME
git-add - Adds file contents to the index

SYNOPSIS
git add [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]

DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically adds the
current content of existing paths as a whole, but with some options it can also
be used to add content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

More Git vocab

• index: staging area (located .git/index)
• content: git tracks a collection of file content, not the file itself
• tree: git's representation of a file system
• working tree: tree representing the local working copy
• staged: ready to be committed
• commit: a snapshot of the working tree (a database entry)
• ref: pointer to a commit object
• branch: just a (special) ref; semantically: represents a line of dev
• HEAD: a ref pointing to the working tree

UW CSE 403 Au23 45

UW CSE 403 Au23 46

