Eric Wahlquist
Puja Ramanathan
CSE 403
Winter 2019
Teachure

Our Motivation

The goal of our proposed project, Teachure, is to teach users about the features of the Eclipse
IDE that they may not be aware of. Many people prefer the simplicity and low memory usage of
lightweight text and source code editors over IDEs. During our project brainstorming sessions, a
complaint that was raised in the IDE group was that Eclipse is “slow”. However, it was also
noted that when programming in Java, many of those same people prefer to use Eclipse for its
features (like its static evaluation tools). Our project hopes to address some of the negativity
toward Eclipse. Through real-time feedback to the user, our plugin will detect when users are
not taking advantage of the many features it includes and inform them of how they could.

The closest existing plugin to what we would like to accomplish is called MouseFeed. MouseFeed
works by generating an annoying popup notification any time the user clicks a button in the
toolbar or a menu item, reminding them of the hotkey shortcut for that feature. This works great
if a user already knows that a feature exists, but falls short as a full solution as it requires the
user to be aware that a feature exists in the first place. The key difference between existing
approaches (i.e. MouseFeed) and ours is that rather than teaching users keyboard shortcuts for
features they already know about, our design will teach them about features they may not even
know about.

Our solution would inform the user in a similar way, by presenting them with a small
notification when the plugin detects that a feature is being skipped over. Imagine a user trying to
rename a variable, manually changing it everywhere it is used in the code rather than simply
using the Refactor->Rename feature. Another example might be a user typing in the “import”
statement, not knowing that existing import issues can often be resolved automatically by
pressing shift-cmd-o. Perhaps a user is manually commenting out a large block of lines, rather
than simply selecting them and pressing cmd-/. In each of these examples, the user would be
informed of how they can take advantage of the feature, teaching them how to save time and
avoid hassle in the future.

Those who would benefit most from such a tool are of course the users who do not take
advantage of many of the available features of Eclipse. In particular, this affects those who are
new to Eclipse, but is not limited to that subset, as even experienced programmers and Eclipse
users may not be aware of its features. This tool will help users to leverage those features to
increase the speed at which they can write their Java code and hopefully counteract some of the
perceptions of “slowness” of Eclipse.

Our Approach

In order to detect when the user has not taken advantage of a given feature, the first step will be
to track the changes that are made in the document as the user types. This is shown to be done
already in Eclipse, as the application provides real-time static analysis feedback. Our plugin
would track changes in a similar fashion, except rather than tracking just the changes to the
document, it would track the changes as well as the actual key input of the user, so that we can
determine whether the changes were induced with a particular set of keystrokes. In doing so, a
possible limitation might be the computation required to constantly track these changes, which
could lead to performance issues.

After tracking the document changes and user input, the next step would be to analyze the
document changes and user input to determine whether a feature is being missed. As an
example, we don’t want to warn the user every time they type an inline comment (“//”), since
this is normal behavior as code is typed. However, if we detect that the user has manually typed
“//” at the beginning of several lines to comment them out, we do want to warn them about the
ability to simply use “cmd-/” to do so instead. A potential limitation of this step may be that
making these determinations will prove to be difficult or require trade-offs between user
freedom and informing the user (e.g. how many inline comments do we allow users to type
before we give them a warning?). It may also require a lot of computation to make these
determinations, which could lead to performance issues.

Once the plugin has detected that the user is missing out on a feature, the final step is to display
a notification to the user about the feature and how to use it. Potential limitations of this step
include making tradeoffs between the benefits of providing less or more information to the user
(how much do information do we want to give the user? Is a simple hotkey reminder enough, or
should we direct them to a webpage with more information on a feature? Do we want to annoy
the user to the point where they are fed up with the notifications and decide to use the features,
or make our notifications less invasive?)

Challenges

Throughout the whole of the project, the biggest challenge we will face is that we are limited by
the abilities of the Eclipse API as well as our lack of familiarity with it. Though our initial
research into the API seems to indicate that functionality exists for key steps of our approach, we
may run into issues with the intricacies of the API that could make certain functionality of our
plugin difficult to implement. Further research of the API before designing a particular module
of our project, as well as making use of the Eclipse Plugin Development forum for advice will
help to mitigate this risk.

Example Notification

ene
- @

5 Navigator 58 =

¥ [cse331 [cse331-1Bsu-pujaram master]
» @ bin
¥ (5 doc
>0
¥ Gy sre
> Eyhws
* gy hwd
F Gyhws
¥ [y hws
[y data
» Eytest
& bulia xemi
[changes. ot
[5 collaborators.tat
[#) feedback.md
[33 MarvelPatis.java
i
¥ Eyhwe
g=10]
4 common.xmi
=) local properties
[¥} classpath
= -gtignore
¥ .project
¥l cse332-p1 [p1-brownbear master]
¥ lci > ©30332-p2 [p2-bunctcake master]
» ¥ cse332-p3 [p3-judgementday master]
» 63 » ese332-para [para-pujaram master]
¥ [hulu-hangman
1 hwe
=1
FE2RSA
¥ L > SidewalkWebpage [SidewalkWebpage
1 submission
¥ [test- project

ese331/src/hwb/MarvelParser java

Time Spent

@ eclip - cseddl -java - Eclipse
=® # 0L B IO LG s W0 4 5
&
=
* s filename is a valid file path @
* filename the file that will be read .
38 b m characters 1ist in which all character names will be stored; B
39 * typically empty when the routine is called Q
40 * books map from titles of comic books to characters that £0
41 e appear in them; typically empty when the routine is called
4z * Bmodifies characters, books
43 b ts fills characters with a list of all unique character names
44 » s fills books with a map from each comic book to all characters
45 2 appearing in it
46 * ®throws MalformedDotaException if the file is not well-formed:
47 * each line contains exactly two tokens separated by a tab,
48 * or else starting with a # symbol to indicate a comment line.
49 g
5@ public static void parseData(String filename, Set<String> characters,
51 Map<String, List<String>> books) throws MalformedDataException {
sz // Wny does this method accept the Collections to be filled as
53 // parameters rather than moking them a return value? To allows us to
54 // "return” two different Collections. If only one or neither Collection
55 // needs to be returned to the caller, feel free to rewrite this method
56 // without the parameters. Generally this is better style.
57 BufferedReader reader = null;
58 try {
59 reader = new BufferedReader(new FileReader(filename));
]
61 // Construct the collections of characters and books, one
62 // <character, book> pair at a time
63 String inputline;
64 while ((inputline = reader.readLine()) != null) {
S
JUni Ji FileNotFoundExc: i mil
KeySpeed Tip: x
Try using cd-{ to add
comments to several lines.

The combined amount of hours that we spent on this proposal is around 18-20. This includes
coming up with an idea, researching existing solutions, considering aspects of our proposal,
creating the document and slides, and preparing our presentation.

