
Thuy Nhi Tran-Thien
Hang Bui

CSE 403 Project Pitch: RewinDB

Motivation

Standard debuggers do not offer the option of stepping back. Too often, programmers set
the breakpoint too far or step through the debugger too fast and miss the step they wanted to
examine and have to restart. For example, imagine a CS student who is trying to debug their
program. They want to look at what is in their array at line 15, but they accidentally advance to
line 16 when the array is discarded. With a reverse debugger, they could simply examine the
state of the array by looking at the program state from line 15, which our debugger would store
for reference.

Currently, reverse debuggers exist but are either too heavy (stores entire stackframe for
the duration of the program) or do not allow live reverse-debugging (the entire program must
execute to be recorded, then user can begin debugging). For most of us who are only interested
in a few previous steps, the first option is overkill and may slow down the debugger. The second
one is also limited because one may want to step through the program like in a regular debugger
or only look at a certain part, not execute the entire thing.

Approach

 Our reverse debugger would simply store the program state for a couple steps and allow
the user to view these states during the debugging process. We liked the idea of “recording” the
program as opposed to actually undoing the changes in order to catch irreproducible bugs and
address concerns of irreversible execution such as network calls or file changes. When the
developer wants to “step back”, we would pause the program’s execution and display the
previously stored information. This gives the illusion of reverse debugging and achieves the goal
of letting the developer see what just happened. Then, when the developer steps forward back to
the place that he or she left off, the debugger resumes executing the program. With other
solutions like Chronon, we would have to wait for the program to finish executing in order to
replay the events. This would be time consuming if we only want to debug the beginning of the
code. Thus, we want to modify this idea and incorporate the recording into the live debugging
session. Additionally, to address the problem of a memory and speed, we only record recent
states instead of the whole program. For example, we might choose to record only the last 10
lines in a cache and replace the least recently used data with new ones as we step through the
program.

Thuy Nhi Tran-Thien
Hang Bui

While our approach does
not allow the user to go back and
examine any previous point in
the program, often times we
only miss the desired line by a
few steps, so we feel our method
is sufficient. It also increases the
speed of our debugger, as
opposed to storing all program
states.This approach also allows
the user to do live debugging by
stepping backwards or forwards
like a standard debugger, instead
of simply recording the
execution. A user may also
want to change variables or do
other tasks at runtime, which our
reverse debugger would allow. ​Figure 1: Rough sketch of our proposed reverse debugger

We think our reverse debugger could be useful for all programmers. Everyone needs to
debug, and it is always more convenient to have the option to go back a few steps. However, for
beginner programmers who are not as used to debuggers, it is more likely for them to overstep,
so we feel our solution would be especially useful for them. Overall, this means less time and
frustration spent on debugging. We can measure the performance of our reverse debugger by
considering speed and memory use. Our goal is to create a lightweight debugger that will be
more efficient and use less memory that the current solutions, while still being a sufficient
reverse debugger.

Challenges & Risks

Although our idea seems simple enough, it may be difficult to actually implement. For
example, we may run into roadblocks when trying to find efficient ways to store program states.
There is also the question of what exactly we are going to store, and also designing the user
interface. We also would like to implement features such as allowing the user to select how
many previous steps they would like to save, which may also be a challenge to implement.
However, we think that our solution is feasible. It will likely take the form of a plugin for a
common IDE, such as Intellij or Eclipse. There have also been previous solutions to our problem
that are heavier or more thorough than ours, so a more lightweight solution is definitely possible.

Time Spent: 3.5 hours

