
Java SmartMerger
By: Kamden Chew & Robert Kolmos

Motivation:
Merge conflicts in git can often result in trivial but annoying cases. For example, white lines and
imports often cause conflicts that the computer is incapable of resolving (as of now) but the
human requires no thought to fix. A smarter merge tool could reduce the amount of busy work
required freeing up the human to work on the nonobvious parts of the code. This merge tool
could suggest changes to the user allowing the user to simply skim the auto generated output
instead of having to review each individual change. This would both save time and reduce the
hassle associated with conflicts. For the sake of completing this project in a timely manner, we
are going to limit the scope of our project to Java files. Although we are only implementing this
merging tool for Java, it can also serve as a proof of concept for other programming languages.

Approach:
We have identified a few cases that we believe the computer should be able to resolve
accurately. These cases include:

- Differences in white space.
- Differences in import statements.
- Method/variable renamings.
- More complicated but potentially possible are cases where accepting one change

disambiguates other changes (i.e. accepting a change to a method header results in
only one set of changes to the calls for the same method compiling).

Limitations:
Our approach is limited by the requirement that the output must be sound in cases where the
tool does something automatically (i.e. that the automated merging should never resolve a
conflict when it is not 100% sure which side should be selected). We make this a requirement
since the possibility of the automated system introducing a change into the code that the human
does not want is unacceptable. In other cases the tool can suggest a change, but allow the user
to override it. This allows the tool to eliminate as much work as possible for the human, while
still providing the ability to resolve conflicts as the user sees fit.

Challenges and Risks:
As part of our tool, we would like to add functionality to handle refactorization merge conflicts.
Attempts to refactor files could be complex, and if the automatically suggested refactoring were
to be unsound, then our tool could make merge conflicts even more annoying than they already
are. To minimize the risk of having an unsound merging resolution we will dedicate extra time
towards testing our implementation and consulting others to verify that our tool merges files in a
way that is functionally equivalent to a manual merge of the same two files.

Examples:

A:
void foo() {
 System.out.println(“foo”);
}
void bar() {
 System.out.println(“bar”);
}

B:
void foo() {
 System.out.println(“foo”);
}

void bar() {
 System.out.println(“bar”);
}

Tool Suggests:
void foo() {
 System.out.println(“foo”);
}

void bar() {
 System.out.println(“bar”);
}

A:
void foo() {
 System.out.println(“foo”);
}

void bar() {
 foo();
 System.out.println(“bar”);
}

B:
void baz() {
 System.out.println(“foo”);
}

void bar() {
 baz();
 System.out.println(“bar”);
}

User accepts foo->baz
header change.

Solution:
void baz() {
 System.out.println(“foo”);
}

void bar() {
 baz();
 System.out.println(“bar”);
}

A:
import java.util.ArrayList;
void foo() {
 new ArrayList<String>();
 System.out.println(“foo”);
}

void bar() {
 System.out.println(“bar”);
}

B:
void foo() {
 System.out.println(“foo”);
}

void bar() {
 System.out.println(“bar”);
}

User accepts deletion of the
first line of method foo().

Solution:
void foo() {
 System.out.println(“foo”);
}

void bar() {
 System.out.println(“bar”);
}

