
IDE Intelligent Tutorials (IDE-IT)
David Thien and John Barcellos

Summary
An IDE plugin that provides intelligent tutorials to the user. These tutorials would only show up
when the user was attempting to manually complete a task that the IDE already has built in as a
feature. The tutorial information is delayed until it is relevant to the user.

Motivation
IDEs can be immensely helpful to developers. They aren’t the right tool in every situation, but
they can provide more support to a developer and automate tasks that they would otherwise
have to do manually in a text editor. One of the challenges when using an IDE is how
cumbersome they can be. They can have dozens or hundreds of great features, but without
properly communicating those features to the user, they are essentially worthless.
Most IDEs (Visual Studio, Intellij, Eclipse, etc) have some form of tips (tips of the day usually)
that try and convey some of their features to the user. However, those tips are commonly
irrelevant to the user and are more of an annoyance than a help.

Example of the complicated layout of IDEs

Tutorials for IDEs from the IDE developers seem to be more in the form of API documentation
than a fleshed out tutorial. Third party tutorials are published in the form of long videos,
cumbersome webpages made to get the user to click to the next page, or “Top 20 best features
for….” lists.
It’s difficult to know a feature exists in an IDE for something that a developer would find
incredibly useful, unless they stumble upon it, happen to read one of the tips of the day and

remember it, are told by a friend / colleague, or get frustrated with doing a tedious task and start
googling for an easier way to accomplish it.

Approach
IDE Intelligent Tutorials would be a plugin available to the IDE for users. The most important
part we are trying to achieve is providing relevant information at relevant times. That is to say,
the plugin will detect when you are attempting to accomplish a task manually (or through the
slow tedious way), when there is a feature that automates most of the process already. When
certain actions from the user trigger the tutorial, it will pop up on screen and provide information
to the user on a feature that would be beneficial to the user at that time.

For example, if a user wants to rename a variable and they start going through their code and
manually renaming the variable each time it appears. After the second variable renamed, a pop
up window could appear explaining about how you can quickly refactor the code to rename the
variable throughout the program instead of searching for each occurrence manually. Or if a user
uses the find functionality to locate where a method is called throughout their program, the IDE
Intelligent Tutorial would detect that and provide information regarding how to look up all
occurrences of the method throughout their project. Or a user could be debugging and manually
stepping through many lines of code, then the tutorial could inform the user about conditional
breakpoints.

A longer term goal would be to include this plugin as an easy to modify tutorial system, so
others could easily add in their own tutorial information with the associated trigger to have that
information appear. This would allow tutorials on new IDE features to be added, as well as other
plugin tutorial information.

Challenges and Risks
The single most serious challenge in developing the product on schedule would be the
limitations involved in how much information the IDE can provide to plug in support. Can we
keep track of the user’s clicks, searches, and other behavior in a low resource manner? Most of
the tutorial triggers will need to be set up in clever ways as well. Not everyone uses an IDE the
same way and everyone has different ways they like to code, develop, and debug.
A less immediate challenge, but still relevant, is creating tutorial information that is not annoying
and cumbersome. Tutorial pop up windows can be annoying and headache inducing. We want
to focus on the approach of providing relevant information at the relevant time to provide a
benefit to the user.

Time Spent
This takes into consideration the time both partners spent
10-12 hours brainstorming and thinking of ideas
3-5 hours creating the documentation, powerpoint, and practicing the presentation

