FootPrint - The Data Tracker

When debugging in Java it is difficult to know the state of data structures during
runtime in a quick and responsive manner. In modern IDE’s during debugging, the
developer can view important information such as the current state of variables, and the
stack trace of the current execution (Fig 1), but it is impossible to see information about
what the variable states were at previous points in the execution. Without plugins,
developers often resort to extensive use of debug print statements, a whole problem in
itself. There do exist plugins for various popular IDEs that attempt to solve this problem,
but fall short in their complexity and bloat, such as JIVE for Eclipse (Fig 2) and Flow for
Intellij. What’s more, both JIVE and Flow are designed to better display the graphs in
the data structures, which is different from FootPrint. FootPrint focuses more on
recording the state of all kinds of data structures, variables and functions called. These
features would better display the changes in the flow.

8 .00 @ LookupActivity.java - [Wiktionary] - Wiktionary - [~/ldeaProjects/Wiktionary] - Intelli] IDEA {Leda) 1U-123.23
‘. o

¥ @ wiktionary ¥
@ = | #2- 1 | (@ LookupActivityjava
EaWiktionary
¥ [J com.example.android.wiktionary
® & BuildConfig @Override
& & ExtendedWikiHelper onPreExecute() {
© & LookupActivity ; .startAnimation(
® © Manifest &
®ar

@ & SimpleWikiHelper

piing Uy s«

sseqeieq &

@ & Wordwidget
» i Libraries @verride
String doInBackground(String... args) {
e S S e—"

Debug () Wiktionary
m Debugger [S] Console +* (@ Logcat +° 3]
Frames . §¥ Threads = variables 3] watches

i#® "<1> main"@830,013,381... ~ Il » = this = {com.example.and roid.wiktionan B | mT

1 = onPreExecute(:271, LookupAct LookupTa P & mTitleBar = {android.widget.LinearLaya 0 mTitle TextView
» s mSlideln = {android.view.animation.Anii @ itleBar View

@ v moveTaskToBack boolean

EntryTitl Stri
startNavigating():157, LookupActivity ° s AL zing I8

onNewintent():237, LookupActivity o

[y Documentation Event Log

601M of 711M

5:Debug % 6:TODO @ Android
13

All files ar o-date (5 minutes ago)

Fig 1. Intellij Debugger

I mING) . v BYOYQY ®C v v vtGv v

Debug * Package Explorer g o C ® Finite State Machine = Sequence Diagram CICAL S
7 DiningPhilosophers java ~ A DiningPhilosophers at localhost:52151
JRE Svstem Librarv 1

1 *DiningPhilo... 7 pickup: 141

66 A e
67 class Fork { 7 e iekup: 142
68 boolean taken = false; / \ | \ A\ PR T
b / / pickup:143
synchronized void pickup() throws . I
while(taken) \ pickup: 144
wait(); \ G
s \
¢ | pickup:145
catch (Exception e) {} P pickup:146
} T M |[EEESTEUE M | e EEn SEETERe NPT,
78)
9 synchronized void drop() { 1 <
7 ta:g: (:)False; % Object Diagram “ il
1 notify();
5 ‘ DiningPhilosophers at localhosts2151
HHH @ Object
d > \ [DiningPhiosophers[o sting |[o Fork[[oThread |
Console HePhllosophevH
. s B 8 v
ningPhilosophers Java Application] C:\Program Files\ava\jdk
11i0sopner FZ PUT dOWN LeTT and rignt Tork \ N\
rilosopher P1 got right fork and is eating err) (wrw i
1ilosopher P2 is thinking. > o pher1 | o .
hrilosopher P1 put down left and right fork \ -4 e ‘ - -
hrilosopher P1 is thinking. . O ; "‘
1ilosopher P2 is hungry and got left fork — ~
1ilosopher P3 is hungry and got left fork ofokt | [Sorz | [efok3 |
1ilosopher P1 is hungry and got left fork = : - z
P 8"y and g % S H@p.ckup:usl ”@EMﬂAG‘ ”_va:kug:l“”

ningPhilosophers.java - DiningPhilosophers/src

Fig 2. JIVE for Eclipse

Our solution, FootPrint, aims to solve this problem by providing an Intellij plugin
that allows developers to access and explore what happens during debugging, including
dynamic changes in data structures, variables, and functions called. FootPrint will only
record this information when debugging is executed and provides it to the developer in
their IDE. FootPrint will allow the developer the ability to save past histories persistently
to compare to other histories. Further, developers can search in histories for notable
events or program states. We envision that FootPrint will greatly aid developers of all
skill levels in fixing bugs and finding performance bottlenecks.

One major limitation of FootPrint is the way in which it will need to convey the
states of complex data structures. Because the information is text-based, FootPrint will
therefore not be a good tool for understanding the layout or design of data structures,
rather it is meant to track the changes within them. Further, it will be difficult to display
changes in large data structures concisely and in an easily understandable manner,
especially in graphs.

Our biggest potential problem is feature creep during development. There are
many potentially useful features that could be added, such as tracking of different
aspects of a program’s environment or tracking changes in the code itself. However,
these features are out of the scope of the current project proposal, and including them
would certainly delay the project. We will mitigate this issue by clearly defining the
requirements for the project and adhering to them.

Time Spent: about 5 hours

