
Elliott de Bruin
Ofek Inbar

CSE 403

Flint
A Customizable Style and Documentation Linter for Java

When a team with many contributors is developing and maintaining a clean and readable

codebase, having style guides is crucial. Style guides lay out a set of rules for how contributors should
format and document their code in order to keep the code base uniform and readable to everyone. In most
cases the set of style rules for a codebase is too large for a programmer to have memorized, so static
analysis tools, also known as linters, are used to review code for violations of style and coding rules. Most
linters however need to be run as a Command Line Tool, which results in programmers finding many
bugs or warnings after they have finished writing their code. Our tool, Flint, can be used to solve these
problems and aid developers. Flint is a customizable style linter IDE plugin for Java code. While many
style linters are not run as you are writing your code, Flint runs on every file-save or keystroke, just like
the compiler, and will automatically point out issues in code as it is being written. Flint will come with a
built-in set of common and uncommon style rules that are useful for many programming projects. While
these built-in rules will cover many style rules, we cannot account for project specific rules so Flint
allows you to implement your own rules that perfectly fit your needs. Rule configuration and custom rule
creation will be defined completely in Java for ease of use for Java developers. Another feature Flint will
have is the ability to mark temporary comments. When writing code many software developers will leave
notes to themselves as inline comments, but these comments may not always fit in with the style
guidelines and will need to removed once the code is completed. To help developers with this problem,
when using Flint the user will be able to mark comment notes as temporary. Comments marked as
temporary will be highlighted for ease to find and remove at a later point and will not be analyzed during
static analysis. Currently one of the most used static analysis tools for Java code style is Checkstyle.
Checkstyle is a static code analysis tool that is used to automate the code review process. Checkstyle
allows the user to define a set of style guidelines from premade rules as well as custom rules for their
code. Although Checkstyle has features similar to Flint, it has limitations that make it not the most ideal
tool to use. To configure which rules to use when linting a particular project, you must write a
configuration file in XML format. When working on a project that is in Java a developer may not be
familiar with writing XML and will have to learn how to do so before writing any configuration for
Checkstyle. Flint on the other hand will allow the user to extend a generic Java configuration class and
implement define their project’s custom configuration in Java, the language they are already working in.
Implementing the customization feature like this will allow developers to easily move between writing
code for their project, and writing new rules.

The key part of creating Flint will be creating the rules that analyze given Java code. Our
approach to designing this software is to start by creating a generic rule class that will examine each line
of a given Java file and perform generic checks to make sure that the file is a valid input. Then for each
specific style rule that is created for Flint, we will be able to extend the generic rule class and add
methods to check for the aspects of the rule we want, such as checking for no trailing whitespace on lines.

We will use this approach both to implement the more common rules that will be built into Flint as well
as the custom rule feature. Users will be able to extend from the generic rule class and create their own
rule classes that cater to their specific needs, all in Java. The benefits of this approach is that all rules will
be based off of the generic rule class so the code is being reused for each new rule and if how all the rules
analyze or reads a file needs to be changed, it can be done in one place. The limitations of this approach
may be that what the client is able to check for depends on how we implement Flint to read files. For
example if Flint were to read only one file at a time, a client would not be able to make a rule for
something that would need to consider multiple files.

The single largest challenge we see with developing Flint on schedule is implementing the
customization feature such that it is easy to understand and use from the first time and it is able to be used
to create any rules that a client requires for their project. In order to properly develop Flint on time we
will start by creating the general rule class and then we will build each built-in rule by extending the
general class. By building each premade rule the same way a client will make a custom rule we will be
able to learn the best process, what is needed in a rule class, and what is not necessary. This way by the
time we have finished the premade rules we will have refined the process and be able to make it
user-friendly and effective for all new rules.

