
Corollary: a Java Documentation and Verification Tool
Jed Chen and Glenn Zhang

Motivation

The purpose of this project is

to help people write better

documentation and be more

certain of the correctness of

the documentation in Java.

Many programmers currently

find it difficult to define what

is necessary to include in their

comments. Sometimes,

programmers may forget to document their edge cases. Other times, they forget to implement

them. People that read code may find commenting styles to differ between two different

classes, making it difficult to understand. Lombok Project aimed to identify many common

usages of variables within Java with tags such as @NonNull and @Data. This could help in some

cases, but ultimately we are looking for a solution not to help write code, but to verify it outside

of runtime.

In Java, there are Javadocs, which is a form of documentation that includes parameters,

exceptions, returns, and some other tags. With these, it is feasible to write good

documentation. We wish to enhance the Javadocs format by adding tags that would help

people understand how to use a piece of code: preconditions, invariants, and postconditions.

By using specific keywords within these tags, there will be no ambiguity as to what these

conditions are. In addition to this, the software will ensure that the code the programmer

wrote follows these tags. These two features combined will make a structured form of

documentation that directly connects documentation and correctness. In conclusion, we wish

to add Javadocs tags that would represent preconditions, invariants, and postconditions that

can be verified through our software, Corollary.

Approach

The high level approach is to

prepare a script. Using static

analysis, the script will take the

program as an input and indicate

whether the program is working as

intended according to the Javadoc

tags. If the program fails to follow

the Javadoc tags, the script will

return error codes and messages

to inform of the programmer where the errors occurred and possible solutions to the errors.

This allows the documentation to have a larger definite relationship to the code that it

describes. Though there have been other approaches that achieve similar goals of verification

like Lombok, they lack in establishing a wider variety of information that programmers try to

convey.

Limitations, Risks, and Challenges

Our approach requires programmers to follow certain formats when writing their

documentation, which may discourage many from adapting to this system. If this project

becomes too obscure to use, the assistance it provides in its translation between code and

documentation diminishes. Another limitation the project has is the limit of the length of

documentations. Documentations typically are kept short for readability, but the verification

aspect of this project is stronger with more lines.

If the style of documentation turns out to be too difficult to follow for people, the

documentation contributes little to nothing to communicate the properties of code. We would

like to be able to cover a large number of types of invariants, but we will start from easily

verifiable ones (e.g. x is greater than y) and move to more difficult ones (e.g. list has no

repeats).

Putting this into an IDE would be nice, but with so many different ones, it is difficult to push out

a software to all of them. We will stick to reading a text file (with a reach goal of implementing

it in some IDE). Similarly, different programming languages have different syntax and nuances,

making it difficult to create a software that can work on multiple languages. For that reason, we

have decided to focus on writing the software for Java, which we are most familiar with.

Hours: 8 hours (Combined)

