Version control

UW CSE 403

Goals of a version control system

e Keep a history of your work
— Explain the purpose of each change
— Checkpoint specific versions (known good state)
— Recover specific state (fix bugs, test old versions)

* Coordinate/merge work between team
members

— Or yourself, on multiple computers or multiple
features

Varieties of version control system
Centralized VCS Distributed VCS

Database Repository
(history)

Repository Edit,
compile, ...

X
(0\
Repository

Working | | Working | | Working

copy copy copy
Working Working Working
copy copy copy
* One repository * Many repositories
e Many working copies * One working copy per repository

(More complicated topologies are possible)

Version control history

Reality Centralized VCS Distributed VCS
Logical (one of these)
unit
#1 (original) #1 (original) | | #1 (original) | | #1 (original) #1 (original)

|
#2 by A #2 by A #2 b{\
#2, #4, #3 & #6 [
#3 by B & #5 by B #3 by B #3 by B
by A ' #4 by A
#4 by A T y
#2, #4, !
#5 by A #3 & #6 & #5 #5 by A L9197
|
#6 by B oyl by A #6 by B #6 by B
Feature
is done
H#7: merge
* Rewrites history * Preserves history
* Or, multiple visible * Multiple commits, one

commits per dev. visible push per dev.

Distributed VCS history

Working copy can be
updatedtoany

revision in the history

#1 (original)

#2 b‘yA/‘\

#3 by B

Normal commit;
edits files

#4 by A

/1

/#5 by A

#8 by C

Also a commit;

only merges

\ﬁbyB

H#7: merge

#9: merge

differences (if any)

Advantages of a distributed VCS

* checkpoint work without publishing to
teammates

 commit, examine history when not connected to
the network

* more accurate history

* more effective merging algorithms

Less important in CSE 403:

* share changes selectively with teammates

* flexibility in repository organization and workflow
* faster performance

A DVCS prohibits* some operations

No update if uncommitted changes exist

— must commit first

No push if not ahead of remote

— must pull & merge first

No partial update (e.g., updating just one directory)
— update gets all changes in a changeset (= a commit)

Rationale:

— Maintain more accurate, complete history
— Keep all users in sync

— Avoid painful conflicts

— Avoid loss of work

Coordinating with others %

* pull incorporates others’
changes into your repository

commit iupdate

w.copy

w.copy w.copy

— (update brings changes into your working copy)
— (N.b.: git pull does pull, merge, and update)

* If you are behind, nothing more to do

— Behind = your history is a prefix
of master history

* If you have made changes in parallel,

you must merge

— Merge = create a new version
incorporating all changes

#1 (original)

#2 b{\

#3 by B

#4 by A

#5 by A

\ﬁbyB

#7: merge

Rebasing rewrites history

Reality

#1 (original)

#2 b‘yA/‘\

#3 by B

#4 by A

#5 by A

be B

#7: merge

Rebased

#1 (original)
|
#2 by A

#4 by A
|

Similar diffs #5 by A

\ #3’ lloy B

#6’ by B

* Cleaner history, easier to read

* Mixes together commit #3 and #7

* Does not show context for change #3

e Squash-and-merge is a safer form of rebasing

Do two changes conflict?

Conflict-free
— Changes are to different lines of a file
Conflicting

— Simultaneous changes to the same lines of a file
— Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion

— A heuristic about when to get the user involved

— Could yield compile errors or test failures
Git records changes at line granularity

— Darcs can record word substitution (for code refactoring)
— Git diff algorithm is customizable

Resolving conflicts

There are three versions of the file: ancestor
You decide which version to keep /\
or how to merge them my remote

changes changes

Many merge tools exist

Configure your DVCS to use the merge tool that you
prefer

— Practice this ahead of time!

Don’t panic! Instead, think.

You can always bail out of the merge and start over
— You have the full local and remote history

Popular DVCSes

Git (git)
Others: Mercurial (hg), Bazaar, Darcs, ...

Git is integrated with the GitHub hosting site
and other tools

Otherwise, similar functionality
Git has an idiosyncratic command set

Hints

* |f using hg, remember to update after you pull

—git pull does pull, merge, and update

* Not symmetric with git push, but usually does what
you want

* To use DVCS just like CVCS (e.g., Subversion):
svn update = git pull

svn commit = gilt commit; git push

Binary files are not diffable

The history database records changes, not the
entire file every time you commit

— The diff algorithm works line-by-line

Avoid binary files (especially simultaneous
editing)

— Word .doc files

Do not commit generated files

— Binaries (e.g., .class files), etc.

— Wastes space in repository

— Causes merge conflicts

Synchronize with teammates often

e Pull often

— Avoid getting behind the master or your
teammates

* Push as often as practical
— Don’t destabilize the master build

— Use continuous integration (automatic testing on
each push)

— Avoid long periods working on a branch

Commit often

* Make many small commits, not one big one
* Easier to understand, review, merge, revert

* How to make many small commits:

— Do only one task at a time
e commit after each one

— Do multiple tasks in one working copy
« Commit only a subset of files (use Git’s staging area)
* Error-prone

— Create a branch for each simultaneous task

* Need to keep track of all your branches, merge
e Easier to share unfinished work with teammates

More ways to avoid merge conflicts

 Modularize your work

— Divide work so that individuals or subteams “own”
a module

— Other team members only need to understand its
specification

— Requires good documentation and testing

e Communicate about changes that may conflict

— Don’t overwhelm the team with such messages

