
Static and dynamic analysis

Michael Ernst
CSE 403

Lecture 2

Static analysis

Examples: compiler optimizations, program
verifiers

Examine program text (no execution)

Build a model of program state

• An abstraction of the run-time state

Reason over possible behaviors

• E.g., “run” the program over the abstract state

Abstract interpretation

Typically implemented via dataflow analysis

Each program statement’s transfer function

indicates how it transforms state

Example: Here is (part of) the transfer
function for y = x++; :

 x is odd; y is odd

y = x++;

 x is even; y is odd

The transfer function

depends on the abstraction:

{ even, odd, unknown }

Selecting an abstract domain

 x = { 3, 5, 7 }; y = { 9, 11, 13 }
y = x++;

 x = { 4, 6, 8 }; y = { 3, 5, 7 }

 x is prime; y is prime
y = x++;

 x is anything; y is prime

 x is odd; y is odd
y = x++;

 x is even; y is odd

 xn = f(an-1,…,zn-1); yn = f(an-1,…,zn-1)
y = x++;

 xn+1 = xn+1; yn+1 = xn

x=3, y=11, x=5, y=9, x=7, y=13
y = x++;

x=4, y=3, x=6, y=5, x=8, y=7

{ even, odd, unknown }

{ prime, composite, unknown }

{ a0, a0+1, (a0+1)*2, …, b0, …, a0+b0, … }

Program states, not variable values

P(ints) = { {0}, {1}, …,

{0, 1}, {0, 2}, …, {1, 2}, …,

… }

Challenge:
Choose good abstractions

The abstraction determines the expense (in

time and space)

The abstraction determines the accuracy (what

information is lost)

• Less accurate results are poor for applications

that require precision

• Cannot conclude all true properties in the

grammar

Static analysis recap

• Slow to analyze large models of state, so

use abstraction

• Conservative: account for abstracted-away

state

• Sound: (weak) properties are guaranteed to

be true

*Some static analyses are not sound

Dynamic analysis

Examples: testing, profiling

Execute program (over some inputs)

• The compiler provides the semantics

Observe executions

• Requires instrumentation infrastructure

2 design challenges:

• what to measure

• what test runs

Challenge:
What to measure?

Test oracle results

Coverage or frequency

• Statements, branches, paths, procedure calls, types,
method dispatch

Values computed

• Parameters, array indices

Run time, memory usage

Similarities among runs [Podgurski 99, Reps 97]

Like abstraction, determines what is reported

Challenge:
Choose good tests

The test suite determines the expense (in time and
space)

The test suite determines the accuracy (what
executions are never seen)

• Less accurate results are poor for applications that
require correctness

• Many domains do not require correctness!

*What information is being collected also matters

Dynamic analysis recap

• Can be as fast as execution (over a test

suite, and allowing for data collection)

• Example: aliasing

• Precise: no abstraction or approximation

• Unsound: results may not generalize to

future executions

• Describes execution environment or test suite

Static
analysis

Abstract domain

slow if precise

Conservative

due to abstraction

Sound

due to conservatism

Concrete execution

slow if exhaustive

Precise

no approximation

Unsound

does not generalize

Dynamic
analysis

Use both!

Same problem, different domain

Any analysis problem can be solved in either domain

• What is the difference in guarantees?

• Type safety: no memory corruption or operations

on wrong types of values

• Static type-checking

• Dynamic type-checking

• Slicing: what computations could affect a value

• Static: reachability over dependence graph

• Dynamic: tracing

Memory checking

Goal: find array bound violations, uses of uninit. memory

Purify [Hastings 92]: run-time instrumentation
• Tagged memory: 2 bits (allocated, initialized) per byte

• Each instruction checks/updates the tags
• Allocate: set “A” bit, clear “I” bit

• Write: require “A” bit, set “I” bit

• Read: require “I” bit

• Deallocate: clear “A” bit

LCLint [Evans 96]: compile-time dataflow analysis
• Abstract state contains allocated and initialized bits

• Each transfer function checks/updates the state

Identical analyses!

Another example: atomicity checking [Flanagan 2003]

Specifications

• Specification checking

• Statically: theorem-proving

• Dynamically: assert statement

• Specification generation

• Statically: by hand or abstract interpretation
[Cousot 77]

• Dynamically: by machine learning invariants

[Ernst 99], reporting unfalsified properties

Static
analysis

Abstract domain

slow if precise

Conservative

due to abstraction

Sound

due to conservatism

Concrete execution

slow if exhaustive

Precise

no approximation

Unsound

does not generalize

Dynamic
analysis

Sound dynamic analysis

Observe every possible execution!

Problem: infinite number of executions

Solution: test case selection and generation

• Efficiency tweaks to an algorithm that works

perfectly in theory but exhausts resources in

practice

Precise static analysis

Reason over full program state!

Problem: infinite number of program states

Solution: data or execution abstraction

• Efficiency tweaks to an algorithm that works

perfectly in theory [Cousot 77] but exhausts

resources in practice

