
Kim Herzig
Senior Software Engineering Manager

Development pipelines
From code commit to shipping it

1

There cannot be a more important thing for an

engineer, for a product team, than to work on

the systems that drive our productivity.

So I would, any day of the week, trade off

features for our own productivity.

I want our best engineers to work on our

engineering systems, so that we can later on

come back and build all of the new concepts we

want.

2

3

Development Processes

By Beao Old waterfall: Paul Smith - File:Waterfall model revised.svgFile:Rapid application software

development.svgFile:Software Development Spiral.svg, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=7836950

By Mark - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68365751

By Lakeworks - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=3526338

Pre-check-in Integration process 4

Inner & Outer Development Loop

One Iteration

Pre-check-in Integration process

Controlled by engineer Controlled by policies

6

Phase 1

Planning

Objectives and Key Results: OKR

7

• Set quarterly goals

Measure metric progress

Share with leaders & co-workers

Methodology

• Common goal set

• Teams are aligned and linked

• Transparency to everyone

Goals

Objective:

80% of Microsoft integration builds

performed using CloudBuild.

Key Results:

- Select top 10 teams not utilizing CloudBuild

by March.

- Perform gap analysis for these teams by April.

- Implement 90% of required features in

CloudBuild by July.

- Start migration process and transition 80% of

builds to CloudBuild before December.

Kanban

8

R
e
q

u
ire

s re
v
ie

w
/a

p
p

ro
v
a
l

9

Phase 2

Coding

Simple Scenario

Unit testing

• Code changes are applied into a single repository.

• Code changes are immediately visible for everybody.

• Unit tests check for functional correctness at function/method level

• Developer run “their” tests.

Development branchtime

But …

Development branchtime

• Thousands of engineers.

• Millions of lines of code and millions of changes.

• Different organizational groups distributed around the world.

• Shared code: Windows Desktop, Server, Phone, Azure, Xbox, …

Build duration
Build duration

Build duration
Build duration

time Build 1

Repo strategies

Build 2
Build 3

Build 4
Build 5

Overlay: Works well on componentized

products with clear interfaces.

time Build 1

Locking: Creates long build queues

and bottlenecks.

Repo strategies

Rolling: Fast, but when failing hard to

find issue.

time

Build 2
Build 1

Branching: Can get very complex and

slow.

time

14

Phase 3

(Local?) Building

Local (?) builds

15

Editor Compiler Processes Write to disk

Local machine

Cache

Cache hit!

Local (?) builds

16

Editor Write to diskCompiler Processes

Local machine

Cache

No cache hit!

Shim

18

Phase 4

Unit-Testing

Local Unit Testing

19

As you write code Live Unit Testing automatically runs

any impacted unit tests in the background

and presents the results and code coverage in real time.

20

Phase 5

Code Reviews

Branch Policies

21

Pull Requests

22

https://dev.azure.com/mseng/Domino/_git/Analytics.Cosmos/pullrequest/437299?_a=overview
https://dev.azure.com/mseng/Domino/_git/Analytics.Cosmos/pullrequest/437299?_a=overview

Live Share

23

24

Phase 6

Integration Builds

Build-Graph

25

• Prior to build: build dependency graph (DAG).

• Models dependencies between projects.

• Hashing compiler inputs …

• … rebuilds only targets for which hash lookup failed

• Distributed build tasks across machines and CPUs

40,000 feet overview

Unit-testing

26

• Tests run in parallel of build tasks (usually using under-utilized CPUs)

• Only run tests for projects that will build.

Integration Builds: CloudBuild (1)
 Build

 Unit test
 Code Coverage

 Automatic retry

 Flaky test management

 Static analyses
 Code smell

 Security vulnerabilities

 Bad code behavior, e.g. leap year issue

 Audit logs

 Code Signing
27

Integration Builds: CloudBuild (1)

28

29

Phase 7

System Testing

Integration Testing: CloudTest

30

40,000 feet overview

31

Phase 8

Deployment

Cloud-hosted pipelines for Linux, Windows and

macOS, with unlimited minutes for open source

Any language, any platform, any cloud

Build, test, and deploy Node.js, Python,  Java, PHP, Ruby, C/C++, .NET,

Android, and iOS apps. Run in parallel on Linux, macOS, and Windows.

Deploy to Azure, AWS, GCP or on-premises

Flexible Workflows & Extensible

Explore and implement community-built build, test, and deployment tasks,

along with hundreds of extensions from Slack to SonarCloud. Support for

YAML, test integration, release gates, reporting, and more.

Best-in-class for open source

Ensure fast continuous integration/continuous delivery (CI/CD) pipelines for

every open source project. Get unlimited build minutes for all open source

projects with up to 10 free parallel jobs across Linux, macOS and Windows

Containers and Kubernetes

Easily build and push images to container registries like Docker Hub and

Azure Container Registry. Deploy containers to individual hosts or

Kubernetes.

Deployment Stages / Rings

“Gold”-Ring

Shipped!
Let’s do it again … and again …

34

35

Example Unit Tests:

Test Selection & Code Coverage

Example

Test selection based on code coverage

Your tool

CODE

COVERAGE

RUNTIME

REDUCTION

36

Slows down test
execution by 30%

Saving 50% of tests!

?

𝐶𝑜𝑠𝑡𝑇𝑒𝑠𝑡 = 𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 ∗ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒 ∗ 𝐶𝑜𝑠𝑡𝑀𝑎𝑐ℎ𝑖𝑛𝑒

= 10,000 ∗ 0.12 sec ∗ 5.14𝑒−4 ൗ$ 𝑠𝑒𝑐 = $𝟎. 𝟔𝟐

This excludes human effort!

 ~2500 builds per day

 Azure machine: $1.85/hr

Assumption: you achieve 50% test reduction

per dayYou saved: $0.62 ∗ 2500 ∗ 0.5 = $722

per build

37

per build

𝐶𝑜𝑠𝑡𝐶𝑜𝑑𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐶𝑜𝑠𝑡𝑇𝑒𝑠𝑡𝑖𝑛𝑔 ∗ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐶𝐶𝑆𝑖𝑧𝑒 ∗ 𝐶𝑜𝑠𝑡𝐷𝑖𝑠𝑘

+ 𝐶𝐶𝑆𝑖𝑧𝑒 ∗ 𝑆𝑝𝑒𝑒𝑑𝐼/𝑂 ∗ 𝐶𝑜𝑠𝑡𝑀𝑎𝑐ℎ𝑖𝑛𝑒

But …

You used code coverage, right?

= $0.62 ∗ 0.3 + 3.3𝐺𝐵 ∗ 0.35 ൗ$ 𝐺𝐵

+ 2 Τ𝑠𝑒𝑐
𝐺𝐵 ∗ 3.3𝐺𝐵 ∗ 5.14𝑒−4 Τ$ 𝑠𝑒𝑐= $1.34

 SSD speed 500MB/sec

 Azure machine: $1.853/hr

You spend: $1.34 ∗ 2500 = $3,350 per day

38

$3,350 $722
Slows down test
execution by 30%

Saving 50% of tests!

And this excludes many aspects: analysis time, network cost, service maintenance, etc.

It might still be worth the effort
But it’s as good as you might think, and we have more pressing issues.

39

©2019 Microsoft Corporation. All rights reserved.

