Not My Problem

Crowdsourcing Code Verification With Video Games

Section 8.2 Program Correctness (for imperative programs)

A theory of program correctness needs wffs, axioms, and inference rules.

Wffs (called Hoare triples) are of the form

$$\{P\} S \{Q\}$$

Where S is a program statement and P (a *precondition*) and Q (a *postcondition*) are logical statements about the variables of S.

Semantics: The meaning of $\{P\}$ S $\{Q\}$ is the truth value of the statement:

If *P* is true before *S* executes, then *Q* is true after *S* halts.

Note that it is assumed that S halts. If $\{P\}$ S $\{Q\}$ is true, then S is said to be *correct* wrt to precondition P and postcondition Q.

Assignment Axiom (AA): $\{P(x/t)\}\ x := t\ \{P\}.$

Example.
$$\{x = 4\} \ x := x - 1 \ \{x = 3\}.$$
 Example. $\{x < 4\} \ x := x - 1 \ \{x < 3\}.$

Inference Rules	$P \to R$ and $\{R\} S \{Q\}$	and	$\{P\} S \{T\} \text{ and } T \to Q$
Consequence Rule:	${P} S {O}$		$\{P\} S \{O\}$

Example. Prove the correctness of $\{x < 3\}$ x := x - 1 $\{x < 3\}$.

Proof: 1.
$$\{x < 4\} \ x := x - 1 \ \{x < 3\}$$
 AA
2. $x < 3$ $P \ [for (x < 3) \rightarrow (x < 4)]$
3. $x < 4$ 2, T
4. $(x < 3) \rightarrow (x < 4)$ 2-3, CP
5. $\{x < 3\} \ x := x - 1 \ \{x < 3\}$ 1, 4, Consequence. QED.

https://www.google.com/amp/slideplayer.com/amp/9852342/?source=images

http://fold.it/portal/info/about

http://www.theesa.com/article/crowdsourced-video-games-prompt-breakthroughs-in-science-and-technology/