
Flow Control
An Overflow Detection Addition to the
Checker Framework

Kenji Nicholson (kenjilee)
Lauren Martini (lmartini)
CSE 403, Spring 2018

Problem and Motivation

● The Checker framework has an index checker
○ BUT, does not account for possible integer overflow

For example:

int size = Integer.MAX_VALUE;
makeArray(size);

public static void makeArray(@Positive(size)) {
size++;
int[] array = new int[size];

}

● Due to the high frequency of overflow errors, this problem is significant

An undetected overflow error occurs
here. The index checker still
believed that the @Positive tag
applies to “size”, even though “size”
will now have a negative value.

Approach

● Static Checker
● Create a graph of program states and look

for states susceptible to overflow
● Define new tags or modify existing ones to

help classify states into overflow cases
● Current approaches have high

false-positive rates or are unsound/dynamic
○ False-positives created by things like:

■ Missing input constraints
■ Lack of global information
■ Imprecise symbolic execution

Example of program states graph with illegal state detection

Challenges
● Reducing false positives

○ Capturing as many input constraints as possible
○ Being able to differentiate between safe and unsafe inputs
○ Correctly and robustly translates code into a program states graph

Risks
● Should not interfere with the existing index checker

○ Mitigate this by creating new tags and following pre-existing methods in the index checker.

