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What is it and why is it useful?

Takes large commits and isolates bug fixes

● Takes a single commit that “Added feature Q and Fixed Bug X and Fixed Bug Y and 
Fixed Bug Z” -> Multiple commits that “Added Feature Q”, “Fixed Bug X”, “Fixed Bug 
Y”, and “Fixed Bug Z”
○ Separates the commit by turning bug fixes into their own commits

Smaller commits with specific tasks allow for better team effectiveness

● While users should do this, in practice programmers often have commits that do too 
many different tasks

● Allows team members to see exactly what part of the commit fixed which bug
● Allows for easier reverts of the other part of the commit without re-introducing the 

bugs



Past Approaches and Our Idea

Past Approach: Experimentally Remove Lines

● One approach was to experimentally remove subsets of the changed lines in a 
commit to see find the smallest subset of lines necessary
○ Use a test suite with each removal to see if the bug is still there
○ Biggest Problem: very expensive w/ around 2lines test runs on a large commit

Our Idea: Find where the changes to the bug fix actually happened

● Inspired by the approach above
● Create a dependency tree to find everything the tests directly/indirectly call
● Allows us to approximate the bug’s “sphere of influence”, so we can use the above 

approach on a much smaller portion of the user’s code
● If done correctly, the sphere of influence is very isolated, so finding which lines fix 

the bug is easy -> they become their own commit



Our Idea and Challenges

Takes large commits and isolates bug fixes

● Takes a single commit that “Added feature Q and Fixed Bug X and Fixed Bug Y and 
Fixed Bug Z” -> Multiple commits that “Added Feature Q”, “Fixed Bug X”, “Fixed Bug 
Y”, and “Fixed Bug Z”
○ Separates the commit by turning bug fixes into their own commits

Big Challenge: requires the user to moderately change coding/testing behavior

● Many smaller problems in the implementation details, but those are less important
● The dependency tree only reduces the work of that approach if the calls from the 

tests and code are confined to a small region
● This is reasonable if the code is kept modular and the tests run specifically on that 

module, not on the whole codebase


