
Narrowing Commit Scope To 
Isolate Bug Fixes And 
Increase Team Effectiveness
Julius Christenson and Abhinav Gottumukkala

juliusc and anak4569



What is it and why is it useful?

Takes large commits and isolates bug fixes

● Takes a single commit that “Added feature Q and Fixed Bug X and Fixed Bug Y and 
Fixed Bug Z” -> Multiple commits that “Added Feature Q”, “Fixed Bug X”, “Fixed Bug 
Y”, and “Fixed Bug Z”
○ Separates the commit by turning bug fixes into their own commits

Smaller commits with specific tasks allow for better team effectiveness

● While users should do this, in practice programmers often have commits that do too 
many different tasks

● Allows team members to see exactly what part of the commit fixed which bug
● Allows for easier reverts of the other part of the commit without re-introducing the 

bugs



Past Approaches and Our Idea

Past Approach: Experimentally Remove Lines

● One approach was to experimentally remove subsets of the changed lines in a 
commit to see find the smallest subset of lines necessary
○ Use a test suite with each removal to see if the bug is still there
○ Biggest Problem: very expensive w/ around 2lines test runs on a large commit

Our Idea: Find where the changes to the bug fix actually happened

● Inspired by the approach above
● Create a dependency tree to find everything the tests directly/indirectly call
● Allows us to approximate the bug’s “sphere of influence”, so we can use the above 

approach on a much smaller portion of the user’s code
● If done correctly, the sphere of influence is very isolated, so finding which lines fix 

the bug is easy -> they become their own commit



Our Idea and Challenges

Takes large commits and isolates bug fixes

● Takes a single commit that “Added feature Q and Fixed Bug X and Fixed Bug Y and 
Fixed Bug Z” -> Multiple commits that “Added Feature Q”, “Fixed Bug X”, “Fixed Bug 
Y”, and “Fixed Bug Z”
○ Separates the commit by turning bug fixes into their own commits

Big Challenge: requires the user to moderately change coding/testing behavior

● Many smaller problems in the implementation details, but those are less important
● The dependency tree only reduces the work of that approach if the calls from the 

tests and code are confined to a small region
● This is reasonable if the code is kept modular and the tests run specifically on that 

module, not on the whole codebase


