
Jediah Conachan (jediah6) 
Alva Wei (alvawei) 
 
 
 
 

Automating Merge Conflict Resolution 
 
 

 
Vision 

 
We will try to solve the problem of merge conflicts. Currently, merge conflicts 

require a developer to manually look at the conflicting lines and resolve the conflict by 
hand. In small projects, this is not an issue, but in anything larger, this can mean a lot of 
extra work. 

A lot of merge conflicts aren’t actually “conflicts”; they can simply be an issue of 
extra whitespace, different variable names, a changed file name, etc. There do exist tools 
that deal with some of these types of conflicts: Git has an “ignore whitespace” option, and 
Team Foundation Server only auto-resolves certain categories of merge conflicts. In these 
kinds of tools, the conflicts that can’t be easily auto-resolved are still left up to the 
developer to manually fix. Bitbucket is an example of a tool that tries to auto-resolve all 
conflicts. It does this by relying on the branches having a defined order, with priority given 
to the “newer” branch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Approach 
 
Our approach will attempt to combine previous approaches: non-conflicts will be 

categorized and handled accordingly, and all other conflicts will be auto-resolved by some 
algorithm (without necessarily relying on branch ordering like Bitbucket). 

To resolve a merge conflict, we must first determine whether the changes truly 
conflict. One attempt involves creating abstract syntax trees (AST) from the code changes. If 
the syntax trees are the same, then the conflicts are superficial and we only need to decide 
which new variable name or extra whitespace to keep. 

Otherwise, the two branches have conflicts that are not easily resolvable and we 
must determine which changes to keep or how to combine the changes. This could involve 
some form of ordering branches (like Bitbucket), prioritizing certain types of changes, or 
looking at historical data to see how past conflicts have been resolved. 

Image from ​“Precise Version Control of Trees with Line-based Version Control Systems.” 
 
 

Risks 
 
Our goal is to automatically resolve merge conflicts, minimizing the amount of work 

done by programmers. A problem, however, is the quality of how the merge conflict is 
automatically resolved. We could automate merge conflicts by simply choosing the changes 
of a randomly selected branch. This is probably not what the programmers want. If we 
create new code from “solving” a merge conflict that is unsatisfactory to the programmers, 
we have created more work for them. They would still need to manually solve the original 
merge conflict, with our “solution” code in their way. 

 

https://pdfs.semanticscholar.org/cc44/ca01cf8e82437f08374c03d2ef7a63651ec1.pdf

