
 
 
Kenji Nicholson 
Lauren Martini 
UW Net ID: kenjilee, lmartini 
 

Flow Control 
An Overflow Detection Addition to the Checker Framework 

 
Problem: Integer overflow occurs when integer arithmetic does not agree with ideal arithmetic. For many 
languages, the integer computation of 2,147,483,647 + 1 results in the negative number -2,147,483,648. 
This results in the unsoundness of many programs that rely on integer computation. For example, the 
Index Checker that is currently used to detect out of bounds errors incorrectly assumes that 
2,147,483,647 + 1 results in a positive number. We plan on creating a tool that can detect whenever an 
integer might overflow to help make programs like Index Checker sound when it comes to overflow errors. 
 
Motivation: Creating a tool that detects where integer overflow may occur solves this problem by 
allowing programs reliant on integer computation to extend their guarantees to cases where integer 
overflow occurs. For example, the Index Checker would be able to detect when adding to an integer 
marked with @Positive results in a resultant integer that is now negative, no longer matching the 
@Positive tag, which would cause an error to be thrown. This error could be modified to be more 
informative, which would also solve the problem of uninformative index-out-of-bounds error messages 
that result from integer overflow. This is an important problem to solve, because overflow errors are 
extremely common, so this is a large gap in the capabilities of the index checker that needs to be filled. 
 
Approach: This tool would likely be designed and developed in one of two ways: 1) as an improved 
version of the existing index checker included in the Checker framework that includes checks for overflow, 
or 2) as a separate overflow checker that you could run in addition to the index checker that would catch 
possible overflow errors separately. In either case, this will be a static analysis tool written in Java, based 
on the source code provided from the Checker Framework. To do this, our tool would construct a graph of 
all possible program states (with the vertices keeping track of the program point and the current state and 
the edges representing a transition between states.) Then, in order to find illegal states in the graph, this 
tool will either introduce new tags, such as a tag that indicates whether it is valid for the sign of a given 
integer to change, or modify the usage and checking of existing tags, such as @Positive, in order to 
correct possible overflow errors. For instance, the @Positive tag could be modified so that the checker 
checks whether the sign of the integer changes due to overflow. Shown below is a diagram of a graph 
placed next to corresponding sample code that exemplifies when an illegal state has been reached. 

 



 

 
Example of a graph of program states with one illegal state (colored in red). 

 
Alternative Approaches: Current alternative approaches are either unsound or have a high rate of false 
positives.  

● One such alternative approach would be IOC: An Integer Overflow Checker for C/C++. This 
checker is dynamic and modifies the Clang checker, and claims to have no false-positives. 
However, this method is unsound (due to being dynamic) and does not find all undefined overflow 
behaviors. Our approach resolves this because its a static checker. However, like other static 
checkers, ours will fall victim to false positives.  

● Another alternative, IntScope uses symbolic execution during static analysis to detect overflow 
errors. Symbolic execution means replacing data from the code with symbols that each have a 
set of expressions. After this, the symbols are translated into a control flow graph like above. 
However, IntScope runs into several false-positives when faced with things like: missing input 
constraints, lacking global information, and imprecise symbolic execution. Our approach will aim 
to reduce these false-positives, if possible. An additional benefit to our approach is that it will be 
an extension of the Checker Framework, which means it will be able to check several other 
issues on top of integer overflow. 

 
Challenges/Risks: One major challenge will be avoiding false positives. Some programs that have 
previously attempted to develop a type system for preventing overflow errors experienced high false 
positive rates. A major risk is that if we decide to develop a modified version of the existing index checker, 
we will need to preserve the function of the existing index checker. Any tag modifications that we make 
should not interfere with the original purpose of the modified tags. To mitigate this, we will most likely 
create new tags rather than modifying existing ones, and follow the checker’s method of generating a 
control flow graph. 
 
References: 
[1] Li, Peng, et al. IOC: An Integer Overflow Checker for C/C++. embed.cs.utah.edu/ioc/. 
[2] Wang, Tielei, et al. IntScope: Automatically Detecting Integer Overflow Vulnerability in X86 Binary 
Using Symbolic Execution. web.cse.ohio-state.edu/~lin.3021/file/IntScope_NDSS09.pdf. 
This project took approximately 10 hours to complete. 


