
Abhinav Gottumukkala, Julius Christenson 
anak4569, juliusc 
Project 1 Pitch 

 
Narrowing Commit Scope To Isolate Bug Fixes And Increase Team 

Effectiveness 
 
Programmers often make large commits, solving numerous problems that 

they only noticed late into the night. Their commits are often vague about the details, 
too far-reaching in their scope and have messages like, “fixed three bugs, made 
variable names more clear, and added functionality that users requested.” But for 
other people looking at these types of commits, it might not be clear as to which 
changes in the code correspond to different parts of that message. These large 
commits can decrease team effectiveness as another team member might not know 
the intent of a change in the code without additional information. Being able to take a 
large commit and separate it into bug fixes and other tasks makes it easier for other 
programmers to understand each commit and easier for analysis tools to work. This 
would improve the readability of commits at a glance, allowing more effective 
programming when working with others. While users can use the patch function to 
split up changes in a file to multiple patches, which allows them to on their own split 
commits into “bug fixes” and “other”, this relies on the user to do it beforehand and 
would require all the code’s authors to do this. 

To fix this, people have conceptualized many approaches to automatically 
minimize patches with respect to various import tasks, such as bug fixes. One 
traditional approach to minimizing a patch tried experimenting by removing lines 
added in the patch at random to see which changes were necessary for the task that 
is being minimized towards. However, this process is incredibly slow, as finding the 
smallest group of lines that still passes the task’s tests requires you run the 
corresponding test suite on many of the 2​lines​ subsets of the lines. For a tool that is 
designed to break apart large patches, which could have thousands of lines 
changed, this approach is untenable. 

Although 
inspired by this 
method, our 
idea mitigates 
the 
performance 
issues using the 
user’s tests 
written to determine if the minimized patch fixed the desired task. Our idea starts by 
creating an overarching dependency tree and setting the root to be the task. From 
each test of our task, we build a subtree with the test itself as the root as a child of 
our overarching tree. With every call in that test to another piece of code in the user’s 
project, we add a child to the current node, continuing this process without repeating 
nodes in the entire tree and until the tree covers every sequence of calls in the entire 
test suite. In this way, we can take the user’s own test suite and try mapping the 
task’s ‘sphere of influence’ in the user’s code, limiting our minimization task to only 
what is needed. Finally, we would traverse through the tree, create a collection of all 



the sections where the user added code and use the traditional approach mentioned 
above to see which of these additions are necessary. With a likely much smaller list 
of additions that is at most equal to the list of additions from before, the performance 
can only be improved. 

This approach suffers from a few problems in implementation details, but our 
idea’s largest challenge is that it assumes something about the user’s coding and 
testing practices: modularity. The steps taken to improve the performance to the 
original approach only work if the tree does not inevitably branch into every change 
made in the commit. This means the user is forced to write tests for the task on as 
local a level as possible to help the tree reduce its internal scope of the bug. While 
making this sort of tool would require many more fine details and assumptions from 
potential users, the core idea is sound. 


