
Postcondition Assertion Checker for 

Java 
Proposed By: Hans Jorgensen(thehans) and Jacob Chong(hindelc) 

Date: March 28th, 2018 

Problem Overview 

In procedural programming languages, most 

procedures have both preconditions - requirements 

of the program state that must be true when the 

procedure is entered - and postconditions - 

requirements that are guaranteed to be true when 

the procedure exits. Preconditions usually manifest 

as conditions on the arguments, and 

postconditions usually manifest as conditions on 

the return values or on any exceptions thrown. In 

object oriented programming languages, most 

classes also have class invariants, or conditions 

that must be true of the object’s state both before 

and after each of its methods. This notion is known 

as design by contract, and is illustrated by the diagram at right. 

 

The Java programming language, which is both procedural and object oriented, has an assert 

functionality that can be used to check these conditions, but because it is at the statement level 

only, it is difficult to check postconditions and class invariants for all possible exit cases. The try-

finally statement can be employed for this purpose, but it must be deliberately inserted by the 

programmer and introduces needless overhead that is still present even if assertions are 

disabled. 

Proposed Project 

Our proposed project is to research and implement solutions to provide a better postcondition 

and class invariant checker in Java. The goal is to provide a feature that: 

● Is easy for programmers to use 

● Requires minimal additional configuration 

● Can be disabled with the assertion system at runtime, with minimal performance impact. 

● (Preferably) Maintains JVM compatibility (official Java runtimes can still run the resulting 

code) 



● (Preferably) Maintains source compatibility (old compilers can compile the new source 

and vice versa) 

 

We plan to modify the Open JDK 10, available via the GPLv2 on http://openjdk.java.net/, to 

implement our solution. We will explore parsing, bytecode generation, and other parts of the 

compilation and execution process to implement this assertion checker. We will primarily focus 

on a postcondition assertion checker, since class invariants can be expressed as 

postconditions, and will incorporate features specific to class invariant checking as we have 

time, such as possible dataflow analysis to only check the parts of the class that have changed. 

 

Our hope for this project is that, in providing a better postcondition assertion checker, more 

programmers will be inclined to include assertions for postconditions and class invariants in their 

work, and programs will thus be tested more thoroughly during their development cycles. 

Risk Analysis 

As this is primarily a research project, we cannot predict the solutions that we will eventually 

discover, if any. It is extremely likely that we will be able to invent a solution that checks 

postconditions and class invariants at all procedure exit points (since such code can be written 

in Java source today with try-finally statements), but the goal of the project will be to discover 

what can be done with the Java ecosystem to implement this solution, and it is not guaranteed 

that our constraints will allow us to progress very far beyond this point. 

 

Our primarily bottleneck will be working with the OpenJDK codebase, if annotations do not 

provide a sufficient framework for any reasonable solutions. The OpenJDK is written in C and 

has been in development for over 10 years, so it is likely that we will be dealing with some 

legacy code elements, including poor design decisions or bugs in the implementation. 

 

The OpenJDK repository is also maintained with Mercurial, which is a DVCS like Git but has 

some functional differences that we will have to account for. If we use Git as our primary version 

control system (such as to interface with Gitlab), it may be more difficult for us to fetch any 

upstream work done on the OpenJDK itself in order to get new features or bug fixes. If we use 

Mercurial, we will have to figure out an alternate coordination solution as well as familiarize 

ourselves with Mercurial if we are not already. 

 

While maintaining source compatibility is a goal of ours, there is a high chance that we will have 

to break it if our solution requires us to add an element to the language. For instance, if we add 

a new keyword to the language to implement this change (such as a “safereturn” keyword), any 

program that uses that keyword as an identifier cannot be used with the new version of the 

parser that we create. As stated above, we hope to maintain complete compatibility with existing 

Java code if possible, and it remains very high priority to continue to generate class files that 

can be run by existing JDKs. 

http://openjdk.java.net/

	Problem Overview
	Proposed Project
	Risk Analysis

