
CSE 403: Project Pitch 
INDEX CHECKER FOR CHANGING STRUCTURES 
 
Jake Chiang (jchiang2) 
Rodney Olson (rolsonjr) 
 
 
Index checkers are a subset of checker frameworks that statically analyze programs in                         
order to determine potential defects. In particular, index checkers identify unsafe code                       
that may manipulate data collections in unintended ways, such as accessing out of                         
bounds indices. Modern index checkers, such as Java’s Checker Framework, are                     
restricted to only operate on fixed length data structures like arrays, strings, and                         
immutable lists. Knowing a data structure to be of fixed size allows certain guarantees to                             
be known at compile time, thus allowing the analysis to take place. 
 
Mutable data structures, however, are not handled by index checkers, as it is impossible                           
to fully understand what indices may be valid for a structure that can have elements                             
added or removed freely during execution. A naïve solution is to treat mutable types as                             
immutable up until a modifying operation (such as adding or removing) is executed, at                           
which point the index checker is invalidated from making any further checks. This                         
approach is unlikely to produce comprehensive results however, as the simple presence                       
of mutable structures means that addition or removal operations will likely be very                         
prevalent.  
 
We propose a modified approach that would allow for index checking on mutable data                           
structures in limited situations by making guarantees based on conditional information                     
gained from surrounding context. Using size guarantees provided by conditional                   
statements (such as if, while, for, etc.), this information could be incorporated into the                           
structure’s type information used by the checker for use in the scope of the conditional.                             
With the structure bounds known, conventional index checking can then be performed.                       
Furthermore, additions or removals to the data structure in the same context can be                           
accounted for and used to update the structure type information.  
 
Schedule oriented challenges in implementing this extension fall primarily around                   
incorporating it into the existing Java Checker Framework. Understanding how to                     
formulate the problem within a reasonable scope and then develop it in the existing                           
environment will likely contribute a large portion of development time. This can                       
hopefully be mitigated by a thorough testing of the basic initial tool cases before                           
expanding the scope of the project. 


