
Cao, Le 1

William Cao (pastor13), Jared Le (jaredtle)
CSE 403 - Project 1
2018-03-28
Intelligent Code Merge using Abstract Trees

In a multi-developer environment, version control software becomes extremely important
to the productivity of the group. However, popular packages, such as Git, use a line-based
approach when detecting changes/resolving conflicts. Conflicts are identified and developers
notified based solely on whether different changes were made to the same lines, regardless of
the content of those changes. Thus, some of these merges conflicts are not actually “true”
conflicts. For instance, one developer may have simply indented a line of code while another
renamed a variable on the same line. These changes are capable of naturally coexisting, and
may be applied together. These merge conflicts can not only be time-consuming and tedious,
but also very expensive, as development time must be set aside to allow the developers to
identify and resolve these trivial conflicts manually.

Those who would benefit the most by this tool would be those who work in a

multi-developer environment. This tool improves software quality by automating the merges that
are trivial, which allows the developers to dedicate that saved time to improving other aspects of
their code, such as bug fixes.

The high-level approach for this utilizes abstract syntax trees (ASTs). The software

would parse the base code into an abstract syntax tree based on the rules of the language itself,
and do the same for the incoming revision code. Afterwards, these two trees will be compared
for conflicts. If there are no outstanding conflicts between these two trees, they can safely be
merged together. This is different from the line-based approach, which only compares changes
between each break line, instead of determining changes using the structure of the code.

By implementing this method, the version control software can automate a significant

number of merge conflicts, which in turn helps developers focus on the conflicts that are
significant to the code base. This project should be able to deal with refactoring of code
(including moves and renaming), insertions, and the deletion of code. It should be able to deal
with the many combinations of the listed changes, such as an insertion and rearrangement
within the same block of code. One limitation to this approach is that it relies heavily on the
syntax of the code. For instance, a commit that contains invalid syntax would be extremely
difficult for the tool to parse, as the underlying AST would be unable to parse the code with any
reliability. Additionally, comments and multiline expressions may lose their formatting unless the
project takes care to preserve that formatting across moves and other changes to the code.
Furthermore, any code that cannot be parsed by the parser will be wrapped in its own type of
object.

The single greatest challenge in developing the product on schedule is figuring out how

to parse the code into the abstract syntax tree. Not all languages have an easily understood

Cao, Le 2

BNF table, and complex languages will require a large amount of translation in order to properly
express the language. Additionally, complex language features, such as the anonymous
functions introduced in Java 8, will increase the complexity of the abstract syntax tree. Parsing
code into the abstract syntax tree may also prove to be challenging due to the myriad of styles
that developers code in. Ideally, the developers would interpret this as a sign that perhaps they
should be following a more rigid style guide. Because this is unlikely, the project can take
several measures to ensure correct translation. Static analysis might be performed to ensure
that the code is being translated properly, and previous academic work on encoding and
decoding BNF text into trees can be consulted.

