CSE 403 Wrapup



Software lifecycle

 Determines the order for tasks:
— Requirements
— Design
— Implementation
— Testing
— Maintenance
e Goal: Perform work as early as practical
— Costly to discover information or make changes late
— Costly to make decisions too early
— Costly to do tasks multiple times

* In CSE 403: iterative process



Requirements

“What”, not “how”
Reflects user view, not developer view
Understand the customer

— Preferably better than they understand themselves
— Seek transformational solutions (beware risk)

Common technique: use case / scenario / story
User interfaces

— High-level concepts & metaphors
— Low-level efficiency

Get feedback early (example: paper prototype)



Architecture

Divide and conquer (with simple interfaces)
Modules for logical units of computation
— Minimize coupling, maximize cohesion

Draw it as a picture (maybe UML)

— Key purpose: to communicate to others

Interactions are part of the architecture too



Divide and conquer:

Modularity, abstraction, specifications

 No one person can understand all of a realistic
system

e Modularity permits focusing on just one part

e Abstraction enables ignoring detail

e Specifications and documentation formally
describe behavior

e Helps to understand/fix errors
— Or to avoid them in the first place



Teamwork

Dividing work
— By module in the architecture

— By task (PM, development, testing, ...

Decisions

— Get understanding and buy-in
Communication

— Specifications

— Deadlines

— Effective meetings

Motivation, trust, and morale

)



Working in a team

No one person can understand all of a realistic system
— Break the system into pieces
— Use modularity, abstraction, specification, documentation

Different points of view bring value
Work effectively with others

— Sometimes challenging, usually worth it
Manage your resources effectively

— Time, people

— Engineering is about tradeoffs

Both technical and management contributions are
critical



Process

Needed to keep your project under control:
e Specification

e Schedule

e Source control

e Testing

e Automated build and test

e Bug database (and fix bugs first)



Testing

Goal: completely verify functionality
— In practice: heuristics improve completeness

Much cheaper than discovering errors later
Be systematic

Test early and often

Tests are code too

Involve users

Can be fun!



Reviews

Another way to get feedback early
Team members critigue documents, code, etc.
Greatly improves quality

ldentifies opportunities for refactoring
Refactoring improves the design

— Design quality has many facets, depends on task



Design

e Design of classes: similar considerations to
architecture

e Design patterns: the vocabulary of program
development
— Helps you design

— Helps you communicate

e Don’t reinvent the wheel!



Getting it right ahead of time

Design: predicting implications
Example: understanding interconnections
Understanding the strengths and weaknesses

If you don’t understand a design, you can’t
use it

Documentation matters!



Documentation

Everyone wants good documentation when using
a system

— Not everyone likes writing documentation

What’s obvious to you probably isn’t obvious to
others

Documentation is the most important part of a
user interface (in a nontrivial system)

“An undocumented software system has zero
commercial value.” =John Chapin (CTO of Vanu,
Inc.)



Maintenance

 Maintenance accounts for most of the effort
(often 90% or more) spent on a successful
software system

A good design enables the system to adapt to
new requirements while maintaining quality
— Think about the long term, but don’t prematurely

optimize

e Good documentation enables others to

understand the design



Interviewing

Know your audience

Communicate about yourself

Be competent

Be honest (about yourself, knowledge, etc.)

You are evaluating them too



What you have learned in CSE 403;
what you will learn later

e Compare your skills today to a quarter ago
— Bottom line: Your project would be easy for you
e This is a measure of how much you have learned

* Your next project can be much more ambitious

* You will continue to learn

— Building interesting systems is never easy
* Like all worthwhile endeavors

— Practice is a good teacher
e Requires thoughtful introspection
e Don’t learn only by trial and error!



Course evaluation

 Please complete the course evaluation form
online

— Useful to future students
— Useful to course staff

— Useful to the department



Go forth and conquer

e System building is fun!

— It’s even more fun when you build them successfully

e Pay attention to what matters
— Use the techniques and tools of CSE 403 effectively



	CSE 403 Wrapup
	Software lifecycle
	Requirements
	Architecture
	Divide and conquer:�Modularity, abstraction, specifications
	Teamwork
	Working in a team
	Process
	Testing
	Reviews
	Design
	Getting it right ahead of time
	Documentation
	Maintenance
	Interviewing
	What you have learned in CSE 403; what you will learn later
	Course evaluation
	Go forth and conquer

