Refactoring

CSE 403

Problem: "Bit rot"

e After several months and new versions, many
codebases reach one of the following states:

— rewritten: Nothing remains from the original code.

— abandoned: The original code is thrown out and rewritten
from scratch.

...even if the code was initially reviewed and well-designed at
the time of commit, and even if changes are reviewed

e Why is this?
— Systems evolve to meet new needs and add new features
— If the code's structure does not also evolve, it will "rot"

Code maintenance

* maintenance: Modification of a software product
after it has been delivered.

Purposes:
— fix bugs
— improve performance
— improve design
— add features

— ~80% of maintenance is for non-bug-fix-related
activities such as adding functionality (Pigosky 1997)

Maintenance is hard

e |It's harder to maintain code than write new code.

— You must understand code written by another developer,
or code you wrote at a different time with a different mindset

— Danger of errors in fragile, poorly-understood code (don't touch
it!)

e Maintenance is how devs spend most of their time
— Many developers hate code maintenance. Why?

e With good design and advance planning, maintenance is
less painful

— Capacity for future change must be anticipated

Refactoring

e refactoring: Improving a piece of software's
internal structure without altering its external
behavior.

— Incurs a short-term time/work cost to reap long-term
benefits

— A long-term investment in the overall quality of your
system.

e refactoring is not the same thing as:
— rewriting code
— adding features
— debugging code

Refactoring examples

Why refactor?

Why fix a part of your system that isn't broken?
e Each part of your system's code has 3 purposes:

1. to execute its functionality,
2. to allow change,
3. to communicate well to developers who read it.

If the code does not do one or more of these, it is
broken.

e Refactoring improves software's design

— more extensible, flexible, understandable,
performant, ...

— Every design improvement has costs (and risks)

Code “smells”:

Signs you should refactor

Duplicated code
Poor abstraction (change one place - must change others)

Large loop, method, class, parameter list; deeply nested
loop

Module has too little cohesion
Modules have too much coupling
Module has poor encapsulation

A "middle man" object doesn't do much;
a “weak subclass” doesn’t use inherited functionality;
a “data class” has little functionality

Dead code
Design is unnecessarily general
Design is too specific

Low-level refactoring

Names:

e Renaming (methods, variables)

* Naming (extracting) “magic” constants
Procedures:

e Extracting code into a method

e Extracting common functionality (including duplicate code) into a
module/method/etc.

e Inlining a method/procedure
 Changing method signatures
Reordering:

e Splitting one method into several to improve cohesion and readability (by
reducing its size)

e Putting statements that semantically belong together near each other

— See also http://www.refactoring.org/catalog/

http://www.refactoring.org/catalog/

IDEs support low-level refactoring

Renaming:

— Variable, method, class
Extraction:

— Method, constant

— Repetitive code snippets
— Interface from a type

Inlining: method, etc

Change method signature

/¢ Compress original output ar put it into byte array.

tempiut . e (new String

Cempo

Lempls

Cpen Declaration
Open Type Hisrarchy
£ Up -
Open Super Implementation
res.35
Cuk
fF S Copy
QUEPU paste
hbyted

J/Sys Source

Local History

Search

- Ld ™~ Bd

ion

ort: millhouse. kevtopic.tools, codeparser.KCode

Extract Method., .

Warnings about inconsistent code

=3

(o] v clo=sed.

h header.
resw.size ()]

p client.
getCutput3tresmi) ;

" + bvtedtream.gize(li:
Rename. ..
Maove. ..
Change Method Signature. ..
Convert Anonymous Class bo Mested,
Convert Nested Type to Top Level,.,

Pull Up. ..

Push Down. ..

Extract Interface...

Use Supertype Where Possible. ..

Inling. ..

Extract Local Variabl -
Extract Constant. ..

Higher-level refactoring

Refactoring to design patterns
Changing language idioms (safety, brevity)
Performance optimization

Clarifying a statement that has evolved over time
or is unclear

Compared to low-level refactoring, high-level is:
— Not as well-supported by tools
— Much more important!

Refactoring plan

e When you identify an area of your system that:
— is poorly designed
— is poorly tested (even if it seems to work so far)
— now needs new features

e What should you do?

— Write unit tests that verify the code's external correctness.
(They should pass on the current, badly-designed code.)

— Refactor the code.
(Some unit tests may break. Fix the bugs.)

— Add any new features.
— As always, keep changes small, do code reviews, etc.

“I don't have time to refactor!”

e Refactoring incurs an up-front cost.
— some developers don't want to do it
— most managers don't like it: it takes and produces no new features

e However...

— well-written code is much more conducive to rapid development
(some estimates put ROl at 500% or more for well-done code)

— finishing refactoring increases programmer morale
* developers prefer working in a “clean house”

e When to refactor?
— best done continuously (like testing) as part of the SE process

— hard to do well late in a project (like testing)
e Why?

Should startups refactor?

e Many small companies and startups skip refactoring.
— “We're too small to need it!”
— “We can't afford it!”

e Reality:
— Refactoring is an investment in quality of the company's
product and code base, often their prime assets

— Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code.

— If a key team member leaves (common in startups), ...
— If a new team member joins (also common), ...

	Refactoring
	Problem: "Bit rot"
	Code maintenance
	Maintenance is hard
	Refactoring
	Refactoring examples
	Why refactor?
	Code “smells”:�Signs you should refactor
	Low-level refactoring
	IDEs support low-level refactoring
	Higher-level refactoring
	Refactoring plan
	“I don't have time to refactor!”
	Should startups refactor?

