Refactoring

CSE 403



Problem: "Bit rot"

e After several months and new versions, many
codebases reach one of the following states:

— rewritten: Nothing remains from the original code.

— abandoned: The original code is thrown out and rewritten
from scratch.

...even if the code was initially reviewed and well-designed at
the time of commit, and even if changes are reviewed

e Why is this?
— Systems evolve to meet new needs and add new features
— If the code's structure does not also evolve, it will "rot"



Code maintenance

* maintenance: Modification of a software product
after it has been delivered.

Purposes:
— fix bugs
— improve performance
— improve design
— add features

— ~80% of maintenance is for non-bug-fix-related
activities such as adding functionality (Pigosky 1997)



Maintenance is hard

e |It's harder to maintain code than write new code.

— You must understand code written by another developer,
or code you wrote at a different time with a different mindset

— Danger of errors in fragile, poorly-understood code (don't touch
it!)

e Maintenance is how devs spend most of their time
— Many developers hate code maintenance. Why?

e With good design and advance planning, maintenance is
less painful

— Capacity for future change must be anticipated



Refactoring

e refactoring: Improving a piece of software's
internal structure without altering its external
behavior.

— Incurs a short-term time/work cost to reap long-term
benefits

— A long-term investment in the overall quality of your
system.

e refactoring is not the same thing as:
— rewriting code
— adding features
— debugging code



Refactoring examples



Why refactor?

Why fix a part of your system that isn't broken?
e Each part of your system's code has 3 purposes:

1. to execute its functionality,
2. to allow change,
3. to communicate well to developers who read it.

If the code does not do one or more of these, it is
broken.

e Refactoring improves software's design

— more extensible, flexible, understandable,
performant, ...

— Every design improvement has costs (and risks)



Code “smells”:

Signs you should refactor

Duplicated code
Poor abstraction (change one place - must change others)

Large loop, method, class, parameter list; deeply nested
loop

Module has too little cohesion
Modules have too much coupling
Module has poor encapsulation

A "middle man" object doesn't do much;
a “weak subclass” doesn’t use inherited functionality;
a “data class” has little functionality

Dead code
Design is unnecessarily general
Design is too specific



Low-level refactoring

Names:

e Renaming (methods, variables)

* Naming (extracting) “magic” constants
Procedures:

e Extracting code into a method

e Extracting common functionality (including duplicate code) into a
module/method/etc.

e Inlining a method/procedure
 Changing method signatures
Reordering:

e Splitting one method into several to improve cohesion and readability (by
reducing its size)

e Putting statements that semantically belong together near each other

— See also http://www.refactoring.org/catalog/



http://www.refactoring.org/catalog/

IDEs support low-level refactoring

Renaming:

— Variable, method, class
Extraction:

— Method, constant

— Repetitive code snippets
— Interface from a type

Inlining: method, etc

Change method signature
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Higher-level refactoring

Refactoring to design patterns
Changing language idioms (safety, brevity)
Performance optimization

Clarifying a statement that has evolved over time
or is unclear

Compared to low-level refactoring, high-level is:
— Not as well-supported by tools
— Much more important!



Refactoring plan

e When you identify an area of your system that:
— is poorly designed
— is poorly tested (even if it seems to work so far)
— now needs new features

e What should you do?

— Write unit tests that verify the code's external correctness.
(They should pass on the current, badly-designed code.)

— Refactor the code.
(Some unit tests may break. Fix the bugs.)

— Add any new features.
— As always, keep changes small, do code reviews, etc.



“I don't have time to refactor!”

e Refactoring incurs an up-front cost.
— some developers don't want to do it
— most managers don't like it: it takes and produces no new features

e However...

— well-written code is much more conducive to rapid development
(some estimates put ROl at 500% or more for well-done code)

— finishing refactoring increases programmer morale
* developers prefer working in a “clean house”

e When to refactor?
— best done continuously (like testing) as part of the SE process

— hard to do well late in a project (like testing)
e Why?



Should startups refactor?

e Many small companies and startups skip refactoring.
— “We're too small to need it!”
— “We can't afford it!”

e Reality:
— Refactoring is an investment in quality of the company's
product and code base, often their prime assets

— Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code.

— If a key team member leaves (common in startups), ...
— If a new team member joins (also common), ...
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