
Build Systems
CSE 403, Spring 2018

What does a developer do?

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

Which should be
handled manually?

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

Which should be
handled manually?

NONE!

What to do instead?

What to do instead?

Automate with a build system!

What is a build system?

What is a build system?

● A tool for automating software engineering tasks

What is a build system?

● A tool for automating software engineering tasks
○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

What is a build system?

● A tool for automating software engineering tasks
○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

A good build tool
handles all these

What is a build system?

● A tool for automating software engineering
○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

A good build system
handles all these

Tasks

● A task is something that the build system can do

Tasks

● A task is something that the build system can do
○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

Tasks

● A task is something that the build system can do
○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

All tasks!

Tasks

Tasks are code!

Tasks

Tasks are code!

● Should be checked into version control
● Should be code-reviewed
● Should be tested

Dependencies between tasks

> ls src/

Lib.java LibTest.java Main.java SystemTest.java

Dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Dependencies between tasks

● A large project may have thousands of tasks

Dependencies between tasks

● A large project may have thousands of tasks
○ What order to run in?
○ How to speed up?

Dependencies between tasks

● A large project may have thousands of tasks
○ What order to run in?
○ How to speed up?

Determining task ordering

● Dependencies between tasks form a directed acyclic graph

Determining task ordering

● Dependencies between tasks form a directed acyclic graph

Topological sort!

Topological sort

● Any ordering on the nodes such that all dependencies are
satisfied

Topological sort

● Any ordering on the nodes such that all dependencies are
satisfied

● Implement by computing indegree (number of incoming edges)
for each node

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Why is this order silly?

Examples of modern build systems

gradle

Apache’s open-source successor to ant, maven

bazel

Google’s internal build tool, open-sourced

https://gradle.org/

https://www.bazel.build/

https://gradle.org/
https://www.bazel.build/

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

kind of rule

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

explicitly specified
dependencies

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

code!

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

kind of rule

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies
(also bazel tasks)

External and internal dependencies

● A list of tasks (internal) or libraries (external)

External and internal dependencies

● A list of tasks (internal) or libraries (external)

deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],

https://docs.gradle.org/current/userguide/artifact dependencies tutorial.html

https://docs.gradle.org/current/userguide/artifact

Why list dependencies?

● Reproducibility!

Why list dependencies?

● Reproducibility!

deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],

https://docs.gradle.org/current/userguide/artifact dependencies tutorial.html

https://docs.gradle.org/current/userguide/artifact

Dependencies between tasks

● A large project may have thousands of tasks
○ What order to run in?
○ How to speed up?

How to speed up builds?

How to speed up builds?

● Incrementalize - only rebuild what you have to

Incrementalization

Main.class

Lib.class

Main.java

Lib.java

Incrementalization

Main.class

Lib.class

Main.java

Lib.java

modified 10:45 AM

modified 1:30 PM

1:31 PMmodified 11:06 AM

modified 11:06 AM

Incrementalization

● Compute hash codes for inputs to each task
● When about to execute a task, check input hashes - if they match

the last time the task was executed, skip it!

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel
● Cache artifacts in the cloud

Best practices

● Automate everything

Best practices

● Automate everything
● Always use a build tool

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t break the build

