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Goals of a version control system

• Keep a history of your work
– Explain the purpose of each change
– Checkpoint specific versions (known good state)
– Recover specific state (fix bugs, test old versions)

• Coordinate/merge work between team 
members
– Or yourself, on multiple computers or multiple 

features



Varieties of version control system
Centralized VCS

• One repository
• Many working copies

Distributed VCS

• Many repositories
• One working copy per repository
(More complicated topologies are possible)
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Version control history
Centralized VCS

• Rewrites history
• Multiple visible 

commits per dev.

Distributed VCS

• Preserves history
• Multiple commits, one 

visible push per dev.
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Distributed VCS history
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Advantages of a distributed VCS

• checkpoint work without publishing to 
teammates

• commit, examine history when not connected to 
the network

• more accurate history
• more effective merging algorithms
Less important in CSE 403:
• share changes selectively with teammates
• flexibility in repository organization and workflow
• faster performance



A DVCS prohibits* some operations

• No update if uncommitted changes exist
– must commit first

• No push if not ahead of remote
– must pull & merge first

• No partial update (e.g., updating just one directory)
– update gets all changes in a changeset (= a commit)

• Rationale:
– Maintain more accurate, complete history
– Keep all users in sync
– Avoid painful conflicts
– Avoid loss of work



Coordinating with others

• pull incorporates others’ 
changes into your repository
– (update brings changes into your working copy)
– (N.b.:  git pull does pull, merge, and update)

• If you are behind, nothing more to do
– Behind = your history is a prefix

of master history
• If you have made changes in parallel,

you must merge
– Merge = create a new version
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Do two changes conflict?
• Conflict-free

– Changes are to different lines of a file
• Conflicting

– Simultaneous changes to the same lines of a file
– Requires manual conflict resolution

• “Conflict-free” is a textual, not semantic, notion
– A heuristic about when to get the user involved
– Could yield compile errors or test failures

• Git records changes at line granularity
– Darcs can record word substitution (for code refactoring)
– Git diff algorithm is customizable



Resolving conflicts

• There are three versions of the file:
• You decide which version to keep

or how to merge them
• Many merge tools exist
• Configure your DVCS to use the merge tool that you 

prefer
– Practice this ahead of time!

• Don’t panic!  Instead, think.
• You can always bail out of the merge and start over

– You have the full local and remote history)
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Popular DVCSes

• Git (git)
• Others:  Mercurial (hg), Bazaar, Darcs, …

• Git is integrated with the GitHub hosting site 
and other tools

• Otherwise, similar functionality
• Git has an idiosyncratic command set



Hints

• Don’t forget to update after you pull
– git pull does pull, merge, and update

• Not symmetric with git push, but usually does what 
you want

• To use DVCS just like Subversion:
svn update = git pull

svn commit = git commit; git push



Binary files are not diffable

• The history database records changes, not the 
entire file every time you commit
– The diff algorithm works line-by-line

• Avoid binary files (especially simultaneous 
editing)
– Word .doc files

• Do not commit generated files
– Binaries (e.g., .class files), etc.
– Wastes space in repository
– Causes merge conflicts



Synchronize with teammates often

• Pull often
– Avoid getting behind the master or your 

teammates

• Push as often as practical
– Don’t destabilize the master build
– Use continuous integration (automatic testing on 

each push)



Commit often
• Make many small commits, not one big one
• Easier to understand, review, merge, revert
• How to make many small commits:

– Do only one task at a time
• commit after each one

– Do multiple tasks in one clone
• Commit only a subset of files (use Git’s staging area)
• Error-prone

– Create a new clone for each simultaneous task
• Can have as many as you like

– Create a branch for each simultaneous task
• Somewhat more efficient
• Somewhat more complicated and error-prone
• Easier to share unfinished work with teammates



More ways to avoid merge conflicts

• Modularize your work
– Divide work so that individuals or subteams “own” 

a module
– Other team members only need to understand its 

specification
– Requires good documentation and testing

• Communicate about changes that may conflict
– Don’t overwhelm the team with such messages
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