
Version control

CSE 403

Goals of a version control system

• Keep a history of your work
– Explain the purpose of each change
– Checkpoint specific versions (known good state)
– Recover specific state (fix bugs, test old versions)

• Coordinate/merge work between team
members
– Or yourself, on multiple computers or multiple

features

Varieties of version control system
Centralized VCS

• One repository
• Many working copies

Distributed VCS

• Many repositories
• One working copy per repository
(More complicated topologies are possible)

Repository

Working
copy

Working
copy

Working
copy

Repository

Working
copy

Working
copy

Working
copy

Repository RepositoryRepository

commit update

Database
(history)

Edit,
compile, …

Version control history
Centralized VCS

• Rewrites history
• Multiple visible

commits per dev.

Distributed VCS

• Preserves history
• Multiple commits, one

visible push per dev.

#1 (original)

#2 by A

Reality

#3 by B

#5 by A

#6 by B

#4 by A

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#7: merge

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

(one of these)

Distributed VCS history

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#7: merge

Normal commit;
edits files

Also a commit;
only merges

differences (if any)Working copy can be
updated to any
revision in the history

#8 by C

#9: merge

Advantages of a distributed VCS

• checkpoint work without publishing to
teammates

• commit, examine history when not connected to
the network

• more accurate history
• more effective merging algorithms
Less important in CSE 403:
• share changes selectively with teammates
• flexibility in repository organization and workflow
• faster performance

A DVCS prohibits* some operations

• No update if uncommitted changes exist
– must commit first

• No push if not ahead of remote
– must pull & merge first

• No partial update (e.g., updating just one directory)
– update gets all changes in a changeset (= a commit)

• Rationale:
– Maintain more accurate, complete history
– Keep all users in sync
– Avoid painful conflicts
– Avoid loss of work

Coordinating with others

• pull incorporates others’
changes into your repository
– (update brings changes into your working copy)
– (N.b.: git pull does pull, merge, and update)

• If you are behind, nothing more to do
– Behind = your history is a prefix

of master history
• If you have made changes in parallel,

you must merge
– Merge = create a new version

incorporating all changes

repo

w.copy w.copy w.copy

repo reporepo

commit update

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#7: merge

Do two changes conflict?
• Conflict-free

– Changes are to different lines of a file
• Conflicting

– Simultaneous changes to the same lines of a file
– Requires manual conflict resolution

• “Conflict-free” is a textual, not semantic, notion
– A heuristic about when to get the user involved
– Could yield compile errors or test failures

• Git records changes at line granularity
– Darcs can record word substitution (for code refactoring)
– Git diff algorithm is customizable

Resolving conflicts

• There are three versions of the file:
• You decide which version to keep

or how to merge them
• Many merge tools exist
• Configure your DVCS to use the merge tool that you

prefer
– Practice this ahead of time!

• Don’t panic! Instead, think.
• You can always bail out of the merge and start over

– You have the full local and remote history)

ancestor

my
changes

remote
changes

Popular DVCSes

• Git (git)
• Others: Mercurial (hg), Bazaar, Darcs, …

• Git is integrated with the GitHub hosting site
and other tools

• Otherwise, similar functionality
• Git has an idiosyncratic command set

Hints

• Don’t forget to update after you pull
– git pull does pull, merge, and update

• Not symmetric with git push, but usually does what
you want

• To use DVCS just like Subversion:
svn update = git pull

svn commit = git commit; git push

Binary files are not diffable

• The history database records changes, not the
entire file every time you commit
– The diff algorithm works line-by-line

• Avoid binary files (especially simultaneous
editing)
– Word .doc files

• Do not commit generated files
– Binaries (e.g., .class files), etc.
– Wastes space in repository
– Causes merge conflicts

Synchronize with teammates often

• Pull often
– Avoid getting behind the master or your

teammates

• Push as often as practical
– Don’t destabilize the master build
– Use continuous integration (automatic testing on

each push)

Commit often
• Make many small commits, not one big one
• Easier to understand, review, merge, revert
• How to make many small commits:

– Do only one task at a time
• commit after each one

– Do multiple tasks in one clone
• Commit only a subset of files (use Git’s staging area)
• Error-prone

– Create a new clone for each simultaneous task
• Can have as many as you like

– Create a branch for each simultaneous task
• Somewhat more efficient
• Somewhat more complicated and error-prone
• Easier to share unfinished work with teammates

More ways to avoid merge conflicts

• Modularize your work
– Divide work so that individuals or subteams “own”

a module
– Other team members only need to understand its

specification
– Requires good documentation and testing

• Communicate about changes that may conflict
– Don’t overwhelm the team with such messages

	Version control
	Goals of a version control system
	Varieties of version control system
	Version control history
	Distributed VCS history
	Advantages of a distributed VCS
	A DVCS prohibits* some operations
	Coordinating with others
	Do two changes conflict?
	Resolving conflicts
	Popular DVCSes
	Hints
	Binary files are not diffable
	Synchronize with teammates often
	Commit often
	More ways to avoid merge conflicts

