
Software development lifecycle

The power of process

Cycle

Life

Software

How complex is software?

What is complex?

How complex is software?

• Measures of complexity:

– lines of code

– number of classes

– number of modules

– module interconnections and dependencies

– time to understand

– # of authors

– … many more

How complex is software?

• Measures of complexity:

– lines of code

– number of classes

– number of modules

– module interconnections and dependencies

– time to understand

– # of authors

– … many more

Windows Server 2003: 50 MSLoC

Debian 5.0: 324 MSLoC

How big is 324 MSLoC?

• 50 lines/page ⇒ 6.5M pages

• 1K pages/ream ⇒ 6.5K reams

• 2 inches/ream ⇒ 13K inches

• 13K inches ≈ 13x the height of the Allen Center

• 5 words/LoC @ 50 wpm ⇒ 32M min ≈ 61 years

Just to type!

No breaks and no thinking allowed!

Addressing software complexity

What are/is the …?

• Requirements

• Design

• Implementation

• Testing plan

• …

Who does the …?

• Requirements

• Design

• Implementation

• Testing

• …

7

• Two sides of the same coin

• Different approaches, representations, etc. are needed for

the artifact-oriented components

• Different skill-sets, knowledge, etc. are needed for the

human-oriented components

Outline

• What is a software development lifecycle?

• Why do we need a lifecycle process?

• Lifecycle models and their tradeoffs

– “Code-and-fix”

– Waterfall

– Spiral

– Evolutionary prototyping

– Staged delivery

– Agile (XP, scrum, 3)

3 many others

Lifecycle stages

• Virtually all lifecycles share these steps/stages/phases:

– Requirements

– Design

– Implementation

– Testing

– Maintenance

• Key question: how do you combine them, and in

what order?

9

Ad-hoc development

• Ad-hoc development: creating software without any formal

guidelines or process

• Advantage: easy to learn and use!

• Disadvantages?

– may ignore some important tasks (testing, design)

– not clear when to start or stop doing each task

– scales poorly to multiple people

– hard to review or evaluate one's work

– code may not match user's needs (no requirements!)

– code was not planned for modification, not flexible

The later a problem is found in software,

the more costly it is to fix.

The software lifecycle

• Software lifecycle: series of steps / phases,

through which software is produced

– from conception to end-of-life

– can take months or years to complete

• Goals of each phase:

– mark out a clear set of steps to perform

– produce a tangible item

– allow for review of work

– specify actions to perform in the next phase

Some lifecycle models

• code-and-fix: write some code, debug it,
repeat (i.e., ad-hoc)

• waterfall: standard phases (req., design, code,
test) in order

• spiral: assess risks at each step; do most
critical action first

• evolutionary prototyping: build an initial
small requirement spec, code it, then "evolve"
the spec and code as needed

• staged delivery: build initial requirement
specs for several releases, then design-and-
code each in sequence

Benefits of using a lifecycle

• It provides us with a structure in which to

work

• It forces us to think of the “big picture” and

follow steps so that we reach it without

glaring deficiencies

• Without it you may make decisions that are

individually on target but collectively

misdirected

• It is a management tool Drawbacks?

Limitations of lifecycle models

• Can lead to compromises and artificial

constraints

• Risk of overemphasizing process (not the end

in itself)

• Ways of evaluating models

– risk management, quality/cost control, predictability,

visibility of progress, customer involvement/feedback

Are there analogies outside of SE?

Consider the process

of building the Paul

Allen Center

Project with little attention to process

Survival Guide:
McConnell p24

Project with early attention to process

Survival Guide:
McConnell p25

Let’s talk about some lifecycle models

Code-and-fix model

Code-and-fix model

Advantages
• Little or no overhead

– just dive in and develop, and see progress quickly

• Applicable sometimes for very small projects and
short-lived prototypes

But DANGEROUS for most projects
• No way to assess progress, quality or risks

• Unlikely to accommodate changes without a major
design overhaul

• Unclear delivery features (scope), timing, and support

Waterfall model

Software

Requirements

Validation

System

Requirements

Validation

Preliminary

Design

Validation

Detailed

Design

Validation

Operations &

Maintenance

Revalidation

Test

Validation test

Code &

Debug

Development test

Waterfall model advantages

• Can work well for projects that are very

well understood but complex

– Tackles all planning upfront

– The ideal of no midstream changes equates

to an efficient software development process

• Supports inexperienced teams

– Orderly, easy-to-follow sequential model

– Reviews at each stage determine if the

product is ready to advance

Waterfall model limitations

• Difficult to specify all reqs of a stage completely and
correctly upfront
– requires a lot of planning up front (not always easy)

– assumes requirements will be clear and well-understood

• Rigid, linear; not adaptable to change in the product
– costly to "swim upstream" back to a previous phase

• No sense of progress until the very end
– nothing to show until almost done ("we're 90% done, I swear!")

• Integration occurs at the very end
– Defies “integrate early and often” rule

– Solutions are inflexible, no feedback until end

– Delivered product may not match customer needs

• Phase reviews are massive affairs
– Inertia means change is costly

Spiral model Spiral model Spiral model Spiral model –––– risk orientedrisk orientedrisk orientedrisk oriented
• Determine objectives and constraints

• Identify and resolve risks

• Evaluate options to resolve risks

• Develop and verify deliverables

• Plan next spiral

• Commit (or not) to next spiral

Spiral model

• Oriented towards phased reduction of risk

• Take on the big risks early, make decisions

– are we building the right product?

– do we have any customers for this product?

– is it possible to implement the product with the
technology that exists today? tomorrow?

• Progresses carefully to a result

– tasks can be more clear each spiral

Spiral model

Advantages

• Especially appropriate at the beginning of the

project, when the requirements are still fluid

• Provides early indication of unforeseen

problems

• Accommodates change

• As costs increase, risks decrease!

– Always addresses the biggest risk first

Spiral model disadvantages

• A lot of planning and management

• Frequent changes of task

– But, get to stick with one product feature/goal

• Requires customer and contract flexibility

• Developers must be able to assess risk

– Must address most important issues

Staged delivery model

Waterfall-like beginnings

Then, short release cycles:

plan, design, execute, test, release

with delivery possible at the end of any cycle

Staged delivery model advantages

• Can ship at the end of any release cycle

– Looks like success to customers, even if not

original goal

• Intermediate deliveries show progress,

satisfy customers, and lead to feedback

• Problems are visible early (e.g., integration)

• Facilitates shorter, more predictable

release cycles

Very practical, widely used and successful

Staged delivery model

disadvantages

• Requires tight coordination with

documentation, management, marketing

• Product must be decomposable

• Extra releases cause overhead

Evolutionary prototyping model

Develop a skeleton system and evolve it for delivery

Evolutionary prototyping model

• Staged delivery ≠ evolu@onary prototyping

– Staged delivery: requirements are known ahead of time

– Evalutionary: discovered by customer feedback on each

release

Advantages
• Addresses risks early

• Produces steady signs of progress, builds customer
confidence

• Useful when requirements are unknown or changing

• Customer involvement ("What do you think of this
version?")

Another popular and successful model,
especially for custom products

Evolutionary prototyping limitations

• Requires close customer involvement

• Assumes user's initial spec is flexible

• Problems with planning

– Especially if the developers are inexperienced

– Feature creep, major design decisions, use of time, etc.

– Hard to estimate completion schedule or feature set

– Unclear how many iterations will be needed to finish

• Integration problems

– fails for separate pieces that must then be integrated

– bridging; new software trying to gradually replace old

• Temporary fixes become permanent constraints

Design-to-schedule

Design-to-schedule
– useful when you absolutely need to ship by a certain

date

– similar to the staged delivery model
• but less flexible because of the fixed shipping date

– requires careful prioritization of features and risks to
address

Design-to-tools
– a model where the project only incorporates features

that are easy to implement by using or combining
existing components

– reduces development time at cost of losing control of
project

Why are there so many models?

• The choice of a model depends on the
project circumstances and requirements

• A good choice of a model can result in a
vastly more productive environment
than a bad choice

• A cocktail of models is frequently used
in practice to get the best of all worlds.
Models are often combined or tailored
to environment

Choices are good!

What’s the best model?

Consider

• The task at hand

• Risk management

• Quality / cost control

• Predictability

• Visibility of progress

• Customer involvement and feedback

Aim for good, fast, and cheap.
But you can't have all three at the same time.

37

Model category matrix

Risk
mgmt.

Quality/
cost ctrl.

Predict-
ability

Visibility
of progress

Customer
involvement

code-and-fix

waterfall

spiral

evolutionary
prototyping

staged delivery

design-to-
schedule

• Rate each model 1-5 in each of the categories

shown: Risk
mgmt.

Quality/
cost ctrl.

Predict-
ability

Visibility
of progress

Customer
involvement

code-and-fix 1 1 1 3 2
waterfall 2 4 3 1 2
spiral 5 5 3 3 3
evolutionary
prototyping 3 3 2 5 5
staged delivery 3 5 3 3 4
design-to-
schedule 4 3 5 3 2

What’s the best SW dev model?

• A system to control anti-lock braking in a car
• A hospital accounting system that replaces an

existing system
• An interactive system that allows airline

passengers to quickly find replacement flight
times (for missed or bumped reservations) from
terminals installed at airports

