
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Winter 2016
courses.cs.washington.edu/courses/cse403/16wi/

Use Cases

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

2

• What is a use case?

• Specifying use cases

• Steps for creating a use case

whatWhat is a use case?

A written description of the user's
interaction with the software product to
accomplish a goal.
• It is an example behavior of the system.
• 3-9 clearly written steps lead to a “main

success scenario.”
• Written from an actor's point of view, not

the system’s.

What is a use case?

4

A written description of the user's
interaction with the software product to
accomplish a goal.
• It is an example behavior of the system.
• 3-9 clearly written steps lead to a “main

success scenario.”
• Written from an actor's point of view, not

the system’s.

What is a use case?

4

Use cases capture
functional requirements
of a system.

Benefits of use cases

5

• Establish an understanding between the
customer and the system developers of the
requirements (success scenarios)

• Alert developers of problematic situations,
error cases to test (extension scenarios)

• Capture a level of functionality to plan around
(list of goals)

Qualities of a good use case

6

Qualities of a good use case

6

• Focuses on interaction
• Starts with a request from an actor to the system.

• Ends with the production of all the answers to the request.

Qualities of a good use case

6

• Focuses on interaction
• Starts with a request from an actor to the system.

• Ends with the production of all the answers to the request.

• Focuses on essential behaviors, from the actor’s point of view
• Does not describe internal system activities.

• Does not describe the GUI in detail.

Qualities of a good use case

6

• Focuses on interaction
• Starts with a request from an actor to the system.

• Ends with the production of all the answers to the request.

• Focuses on essential behaviors, from the actor’s point of view
• Does not describe internal system activities.

• Does not describe the GUI in detail.

• Concise, clear, accessible to non-programmers
• Easy to read.

• Summary fits on a page.

• Main success scenario and extensions.

Use cases versus internal features

7

Consider the
software to
run a mobile
phone …

Use cases versus internal features

7

Consider the
software to
run a mobile
phone …

Use cases
• call someone
• receive a call
• send a message
• memorize a number

Point of view: user

Use cases versus internal features

7

Consider the
software to
run a mobile
phone …

Use cases
• call someone
• receive a call
• send a message
• memorize a number

Point of view: user

Internal functions
• transmit / receive data
• energy (battery)
• user I/O (display)
• phone-book mgmt.

Point of view: developer

Use cases and requirements

8

• Special deals may not run longer than 6 months.

• Customers only become preferred after 1 year.

• A customer has one and only one sales contact.

• Database response time is less than 2 seconds.

• Web site uptime requirement is 99.8%.

• Number of simultaneous users will be 200 max.

Which of these
requirements should be
represented directly in
a use case?

Use cases and requirements

8

• Special deals may not run longer than 6 months.

• Customers only become preferred after 1 year.

• A customer has one and only one sales contact.

• Database response time is less than 2 seconds.

• Web site uptime requirement is 99.8%.

• Number of simultaneous users will be 200 max.

Which of these
requirements should be
represented directly in
a use case?

None! These are properties
but not user-driven behaviors
of the system, so the use
cases wouldn't mention them.

howSpecifying use cases

Terminology

10

Terminology

10

• Actor: an entity that acts on the system
• Person, external hardware (like a timer), or another system.

Terminology

10

• Actor: an entity that acts on the system
• Person, external hardware (like a timer), or another system.

• Primary actor: initiates interaction to accomplish a goal

Terminology

10

• Actor: an entity that acts on the system
• Person, external hardware (like a timer), or another system.

• Primary actor: initiates interaction to accomplish a goal

• Goal: desired outcome of the primary actor

Terminology

10

• Actor: an entity that acts on the system
• Person, external hardware (like a timer), or another system.

• Primary actor: initiates interaction to accomplish a goal

• Goal: desired outcome of the primary actor

• Level
• User goals (accomplished in one sitting)

• Summary goals (accomplished in multiple sittings)

• Subfunction goals (required to carry out user goals)

Terminology

10

• Actor: an entity that acts on the system
• Person, external hardware (like a timer), or another system.

• Primary actor: initiates interaction to accomplish a goal

• Goal: desired outcome of the primary actor

• Level
• User goals (accomplished in one sitting)

• Summary goals (accomplished in multiple sittings)

• Subfunction goals (required to carry out user goals)

Use cases are always initiated by actors and describe
the flow of events that these actors are involved in.

Styles of use cases

11

Use case diagram
• in UML, the Unified Modeling Language

Informal use case
• a short paragraph or outline

Formal use case
• a multi-part structured description

Use case diagram

12

The overall list of the system's use cases can be drawn
as high-level diagrams, with:

• actors as stick-men, with their names (nouns)

• use cases as ellipses, with their names (verbs)

• line associations, connecting an actor to a use case in
which that actor participates

• use cases can be connected to other cases that they rely
on or extend

Library patron

Check out book

Actor-goal lists: function content of the system

13

Actor Goal

Library Patron Search for a book

Check out a book

Return a book

Librarian Search for a book

Check availability

Request a book from another library

It can be useful to
create a list or table of
primary actors and
their "goals" (use cases
they start). The
diagram will then
capture this material.

Use case summary diagrams

14

Library System

Search

Check avail.

Return

Check out

Librarian

Library
Patron

Request

Use case summary diagrams

15

Extension.

What is an extension?

16

What is an extension?

16

• A possible branch in a use case scenario, often triggered by an
error or failure in the process.

• Useful for finding edge cases that need to be handled and tested.

What is an extension?

16

• A possible branch in a use case scenario, often triggered by an
error or failure in the process.

• Useful for finding edge cases that need to be handled and tested.

• Do
• Think about how every step of the use case could fail.

• Give a plausible response to each extension from the system.

• Response should either jump to another step of the case, or end it.

What is an extension?

16

• A possible branch in a use case scenario, often triggered by an
error or failure in the process.

• Useful for finding edge cases that need to be handled and tested.

• Do
• Think about how every step of the use case could fail.

• Give a plausible response to each extension from the system.

• Response should either jump to another step of the case, or end it.

• Don’t
• List things outside the use case ("User's power goes out").

• Make unreasonable assumptions ("DB will never fail").

• List a remedy that your system can't actually implement.

Informal use case

17

Patron loses a book
• The library patron reports to the librarian

that she has lost a book. The librarian
prints out the library record and asks
patron to speak with the head librarian,
who will arrange for the patron to pay a
fee. The system will be updated to reflect
lost book, and patron's record is updated
as well. The head librarian may authorize
purchase of a replacement book.

Informal use case is
written as a paragraph
describing the
scenario / interaction.

Informal use case with structured text

18

I
• I.A

• I.A.ii
• I.A.ii.3

• I.A.ii.3.q

Although not ideal, it is almost always better
than unstructured natural language.

You will probably use
something in this general
style.

Formal use case

19

Goal Patron wishes to reserve a book using the online catalog

Primary actor Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end
condition

Book is reserved

Failure end condition Book is not reserved

Trigger Patron logs into system

Parts that make up a formal use case
(continued on the next slide).

Formal use case (continued)

20

Main success
scenario

1. Patron enters account and password
2. System verifies and logs patron in
3. System presents catalog with search screen
4. Patron enters book title
5. System finds match and presents location choices
6. Patron selects location and reserves book
7. System confirms reservation and re-presents catalog

Extensions (error
scenarios)

2a. Password is incorrect
 2a.1 System returns patron to login screen
 2a.2 Patron backs out or tries again
5a. System cannot find book
 5a.1 …

Variations
(alternative
scenarios)

4. Patron enters author or subject

What notation is good?

21

There are standard templates for requirements
documents, diagrams, etc. with specific rules. Is this a
good thing? Should we use these standards or make
up our own?
• Standards are helpful as a template or starting point.
• But don't be a slave to formal rules or use a model/

scheme that doesn't fit your project's needs.

stepsSteps for creating a use case

Steps for creating a use case

23

Alistair Cockburn

1. Identify actors and goals

2. Write the main success scenario

3. List the failure extensions

4. List the variations

1. Identify actors and goals

24

• What computers, subsystems and people will drive our system? (actors)

• What does each actor need our system to do? (goals)

• Exercise: actors/goals for your projects

Come up with 4 use case names for your software,
draw a UML use case summary diagram for it, and
write out one complete (formal) use case.

2. Write the main success scenario

25

• Main success scenario is the preferred "happy path”
• easiest to read and understand

• everything else is a complication on this

• Capture each actor's intent and responsibility, from
trigger to goal delivery

• say what information passes between them

• number each line

3. List the failure extensions

26

• Usually, almost every step can fail (bad credit, out of stock)
• Note the failure condition separately, after the main success scenario

• Describe failure-handling
• recoverable: back to main course (low stock + reduce quantity)

• non-recoverable: fails (out of stock, or not a valued customer)

• each scenario goes from trigger to completion

• Label with step number and letter:
• 5a failure condition

• 5a.1 use case continued with failure scenario

• 5a.2 continued

Exercise: describe one failure
extension for your project’s use
case.

4. List the variations

27

• Many steps can have alternative behaviors or scenarios

• Label with step number and alternative
• 5’. Alternative 1 for step 5

• 5’’. Alternative 2 for step 5

Pulling it all together: how much is enough?

28

You have to find a balance
• comprehensible vs. detailed

• graphics vs. explicit wording and tables

• short and timely vs. complete and late

Your balance may differ with each customer
depending on your relationship and flexibility

Summary

29

• Uses case describe example system behaviors
(contracts) from the user’s point of view.

• Can be diagrams, informal paragraphs, formal
use cases.

• 4 steps to create use cases.

