
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Winter 2016
courses.cs.washington.edu/courses/cse403/16wi/

Software Lifecycle

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

2

• Essential tasks of development

• What is a software development lifecycle?

• Why do we need a lifecycle process?

• Five basic lifecycle models and their tradeoffs

• Evaluating models

• Summary

Essential tasks of development

3

Requirements

Design

Implementation

Testing

Maintenance

Essential tasks of development

3

Each phase requires different
tools, knowledge, skill-set. A lot of
ways to split responsibilities!

Requirements

Design

Implementation

Testing

Maintenance

Essential tasks of development

3

How are these related?
What is a good order?

Each phase requires different
tools, knowledge, skill-set. A lot of
ways to split responsibilities!

Requirements

Design

Implementation

Testing

Maintenance

The software lifecycle

4

Requirements

Design

Implementation

Testing

Software lifecycle is a series of phases
through which software is produced:
• from conception to end-of-life
• can take months or years to complete

Maintenance

The software lifecycle

4

Requirements

Design

Implementation

Testing

Software lifecycle is a series of phases
through which software is produced:
• from conception to end-of-life
• can take months or years to complete

Goals of each phase:
• mark out a clear set of steps to perform
• produce a tangible item
• allow for review of work
• specify actions to perform in the next phase

Maintenance

Why do we need models and process?

5

Fixing bugs later is
harder and more costly

Why do we need process?

6

A bug in the requirements.

Life without software process

7

• Advantages:
• nothing to learn or plan!

• work on whatever is interesting, ignore the rest.

• Disadvantages:
• may ignore some important tasks (testing, design)

• not clear when to start or stop doing each task

• scales poorly to multiple people

• hard to review or evaluate one's work

• code may not match user's needs (no requirements!)

• code was not planned for modification, not flexible

Project with little attention to process

8

Survival Guide, McConnell, p. 24

Life with software process

9

• Advantages:
• Provides structure in which to work

• Forces you to think about the big picture and to follow steps
to reach it

• Without it, you may make decisions that are locally optimal
but globally misdirected

• It is a management tool

• Disadvantages:
• Can lead to compromises and artificial constraints

• Risk of over-emphasizing process rather than the product
itself!

Project with early attention to process

10

Survival Guide, McConnell, p. 25

Some lifecycle models

11

• Code-and-fix: write code, fix it when it breaks

• Waterfall: perform each phase in order

• Spiral: triage/figure out riskiest things first

• Staged delivery: build initial requirement specs
or several releases, then design-and-code each in
sequence

• Evolutionary prototyping: do the next easiest
thing that could possibly lead to feedback

Cycle

LifeSoftware

Code-and-fix model

12

requirements
(maybe)

release
(maybe)

Code-and-fix model

13

• Advantages:
• Little to no overhead, see progress quickly

• Applicable for very small projects and short-lived prototypes

• Disadvantages:
• No way to asses progress, quality, or risks

• Unlikely to accommodate changes without a major design
overhaul

• Unclear delivery features (scope), timing, and support

Code-and-fix model

13

• Advantages:
• Little to no overhead, see progress quickly

• Applicable for very small projects and short-lived prototypes

• Disadvantages:
• No way to asses progress, quality, or risks

• Unlikely to accommodate changes without a major design
overhaul

• Unclear delivery features (scope), timing, and support

Waterfall model

14

Software
Requirements
Validation

System
Requirements
Validation

Preliminary
Design
Validation

Detailed
Design
Validation

Operations &
Maintenance
Revalidation

Test

Validation test

Code &
Debug
Development test

Waterfall model

14

Software
Requirements
Validation

System
Requirements
Validation

Preliminary
Design
Validation

Detailed
Design
Validation

Operations &
Maintenance
Revalidation

Test

Validation test

Code &
Debug
Development test

Waterfall model

14

Software
Requirements
Validation

System
Requirements
Validation

Preliminary
Design
Validation

Detailed
Design
Validation

Operations &
Maintenance
Revalidation

Test

Validation test

Code &
Debug
Development test

Waterfall model advantages

15

• Suitable for projects that are very well
understood but complex

• Tackles all planning upfront

• The ideal of no midstream changes equates to an
efficient software development process

• Supports inexperienced teams
• Orderly, easy-to-follow sequential model

• Reviews at each stage determine if the product is
ready to advance

Waterfall model disadvantages

16

• Requires a lot of planning up front (not always easy)
• assumes requirements will be clear and well-understood

• Rigid, linear; not adaptable to change in the product
• costly to "swim upstream" back to a previous phase

• No sense of progress until the very end
• no code to show until almost done

• Integration occurs at the very end
• defies “integrate early and often” rule

• solutions are inflexible, no feedback until end

• Delivered product may not match customer needs
• phase reviews are massive affairs

• inertia means change is costly

Spiral model (risk oriented)

17

Spiral model advantages

18

• Especially appropriate at the beginning of the project,
when the requirements are still fluid

• Provides early indication of unforeseen problems

• Accommodates change

• As costs increase, risks decrease!

• Always addresses the biggest risk first

Spiral model disadvantages

19

• A lot of planning and management

• Frequent changes of task
• But, get to stick with one product feature/goal

• Requires customer and contract flexibility

• Developers must be able to assess risk
• Must address most important issues

Staged delivery model

20

Requirements

Design

Stage 1: detailed design, code, test, deliver

Stage n: detailed design, code, test, deliver

Waterfall-like beginnings
Then, short release cycles:

plan, design, execute, test, release
with delivery possible at the end of any cycle

Staged delivery model advantages

21

• Can ship at the end of any release cycle
• Looks like success to customers, even if not original goal

• Intermediate deliveries show progress, satisfy customers, and
lead to feedback

• Problems are visible early (e.g., integration)

• Facilitates shorter, more predictable release cycles

Very practical, widely used and successful

Staged delivery model disadvantages

22

• Requires tight coordination with documentation,
management, marketing

• Product must be decomposable

• Extra releases cause overhead

Evolutionary prototyping

23

Initial concept Design and
implement

initial
prototype

Refine
prototype until

acceptable
Complete and

release
prototype

Develop a skeleton system
and evolve it for delivery

Evolutionary prototyping

23

Initial concept Design and
implement

initial
prototype

Refine
prototype until

acceptable
Complete and

release
prototype

Develop a skeleton system
and evolve it for delivery

Different from staged delivery in
that requirements are not known
ahead of time. Discovered by
feedback.

Evolutionary prototyping advantages

24

• Addresses risks early

• Steady signs of progress build customer confidence

• Useful when requirements are unknown or changing

• Participatory design / useful feedback loops

Very practical, widely used and successful

Evolutionary prototyping disadvantages

25

• Requires close customer involvement

• Assumes user's initial spec is flexible

• Problems with planning
• especially if the developers are inexperienced

• feature creep, major design decisions, use of time, etc.

• hard to estimate completion schedule or feature set

• unclear how many iterations will be needed to finish

• Integration problems
• fails for separate pieces that must then be integrated

• bridging; new software trying to gradually replace old

• Temporary fixes become permanent constraints

• Requires low friction deployment and experimentation

More models: embracing or fighting timelines

26

• Fit-to-schedule
• “We will ship on a certain date and cut until it fits”

• similar to the staged delivery model

• but less flexible because of the fixed shipping date

• requires careful prioritization of features and risks

• Fit-to-features/quality
• “We’ll ship the product when it is ready”

• Trade predictable schedules for quality control

Why are there so many models?

27

• The choice of a model depends on the project circumstances
and requirements.

• A good choice of a model can result in a vastly more productive
environment than a bad choice.

• A cocktail of models is frequently used in practice to get the
best of all worlds. Models are often combined or tailored to
environment

What’s the best model?

28

• Consider
• The task at hand

• Risk management

• Quality / cost control

• Predictability

• Visibility of progress

• Customer involvement and feedback

What’s the best model?

28

• Consider
• The task at hand

• Risk management

• Quality / cost control

• Predictability

• Visibility of progress

• Customer involvement and feedback

Aim for good, fast, and cheap.
But you can’t have all three at the same time.

Model category matrix (on a scale from 1 to 5)

29

Risk
mgmt.

Quality/ 
cost ctrl.

Predict-  
ability

Visibility of
progress

Customer 
involvement

Code-and-fix 1 1 1 3 2

Waterfall 2 4 3 1 2

Spiral 5 5 3 3 3

Evolutionary
prototyping

3 3 2 5 5

Staged delivery 3 5 3 3 4

Fit-to-schedule 4 3 5 3 2

What’s the best model for …

30

• A system to control anti-lock braking in a car

• A hospital accounting system that replaces an existing system

• An interactive system that allows airline passengers to quickly
find replacement flight times (for missed or bumped
reservations) from terminals installed at airports

• A mobile app for finding romantic partners

Summary

31

• Software lifecycle models as management tools
• System for organizing effort among workers

• Forces planning and seeing consequences

• Splits work into smaller, tractable units

• Supports feedback and accurate timescales

• Processes support production at scale

• Limitations of lifecycle models
• Can lead to artificial design constraints

• Risk of overemphasizing process over results

• Models only approximate actual practices

Cycle

LifeSoftware

