CSE 403: Software Engineering, Winter 2016

courses.cs.washington.edu/courses/cse403/1 6wi/

System Testing

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

* Recap: system testing
* Integration testing

* Performance testing

system testing

System testing

e System testing: tests the behavior of a system as a
whole, with respect to scenarios and requirements

* Functional testing, integration testing TESTING IN
* Load, stress, performance testing PROGRESS

* Acceptance, usability, installation, beta testing

System testing

e System testing: tests the behavior of a system as a
whole, with respect to scenarios and requirements

* Functional testing, integration testing TESTING IN
* Load, stress, performance testing PROGRESS

* Acceptance, usability, installation, beta testing

integration testing

Integration testing

Integration testing

* Integration testing: checking software quality by
testing two or more dependent software modules
as a group or a (sub)system.

Integration testing

* Integration testing: checking software quality by
testing two or more dependent software modules
as a group or a (sub)system.

* Challenges same as in unit testing, plus:

* Combined units can fail in more places and in more
complicated ways.
* How to test a partial system where not all parts exist?

* How to "rig" the behavior of unit A so as to produce a
given behavior from unit B!

Stubs: a way to test a partial system

Stubs: a way to test a partial system

* Stub: A controllable replacement for an existing
software unit to which your code under test has a
dependency.

Stubs: a way to test a partial system

* Stub: A controllable replacement for an existing
software unit to which your code under test has a
dependency.

* Useful for simulating difficult-to-control elements:

e network / internet
* time/date-sensitive code
* database, files, io, threads, memory

* brittle legacy code /systems

Testing with stubs (1/3)

* |dentify the external dependency.

* This is either a resource or a class/object.
 [fitisn't an object, wrap it up into one.

* (Suppose that Class A depends on Class B.)

A

+ methodThatUsesB ()

l

B

+ doStuffWithX()

l

Resource X

-yummyData

+ flakyBehavior

Testing with stubs (2/3)

* Extract the core functionality of the object into
an interface.

e Create an InterfaceB based on B

* Change all of A's code to work with type
InterfaceB, not B

————————

A

+ methodThatUsesB ()

+ doStuffVithX()

!

Resource X

-yummyData

+ flakyBehavior

!

«interface»
InterfaceB

+ doStuffWithx()

Testing with stubs (3/3)

* Write a second "stub" class that also

implements the interface, but returns pre-

determined fake data.

* Now A's dependency on B is abstracted
away and can be tested easily.

* Can focus on how well A integrates with B's

external behavior.

A

+ methodThatUsesB ()

+ doStuffWithXx()

!

Resource X

-yummyData

+ flakyBehavior

!

«interfacex»
InterfaceB

+ doStuffWithXx()

- fakeData

+ doStuffWithX()

Where to inject stubs?

Where to inject stubs?

* Seams: places to inject the stub so Class A will talk to it.

* at construction (not ideal)
A aardvark = new A(new StubB());

* through a getter/setter method (better)
A apple = new A(...);
aardvark.setResource(new StubB());

* just before usage, as a parameter (also better)
aardvark.methodThatUsesB(new StubB());

Where to inject stubs?

* Seams: places to inject the stub so Class A will talk to it.

* at construction (not ideal)
A aardvark = new A(new StubB());

* through a getter/setter method (better)
A apple = new A(...);
aardvark.setResource(new StubB());

* just before usage, as a parameter (also better)
aardvark.methodThatUsesB(new StubB());

* You should not have to change A's code everywhere (beyond using
your interface) in order to use your Stub B. (a "testable design")

Mock objects: a way to test interactions

* Mock object: A fake object that decides
whether a unit test has passed or failed by

watching interactions between objects.
¥

» Useful for interaction testing, as opposed
to state testing

>
™

Stubs vs mocks

* A stub (B) gives out data that goes
to the object/class under test (A).

* The unit test directly asserts
against A, to make sure it gives the
right result when fed B’s data.

class under
test (A)

communicate

D EEE—

stub (B)

\ssert

test

Stubs vs mocks

* A stub (B) gives out data that goes
to the object/class under test (A).

* The unit test directly asserts
against A, to make sure it gives the
right result when fed B’s data.

* A mock (B) waits to be called by
the class under test (A).

* It may have several methods it
expects that A should call.

* |t makes sure that it was called in
exactly the right way.

e If A interacts with B the way it
should, the test passes.

communicate

class under l > stub (B)

communicate

class under €4—— mock (B)

test (A)
\ssert

test

test (A)
asserV

test

Mock object frameworks

* Stubs are often best created by hand/IDE. Mocks are
tedious to create manually.

* Mock object frameworks help with the process.

* android-mock, EasyMock, jMock (Java)

* Frameworks provide the following:
* auto-generation of mock objects that implement a given
interface

* logging of what calls are performed on the mock objects

* methods/primitives for declaring and asserting your
expectations

Mock object frameworks

* Stubs are often best created by hand/IDE. Mocks are
tedious to create manually.

* Mock object frameworks help with the process.

* android-mock, EasyMock, jMock (Java)

* Frameworks provide the following:
* auto-generation of mock objects that implement a given
interface

* logging of what calls are performed on the mock objects

* methods/primitives for declaring and asserting your
expectations

A jMock example

import org.jmock.integration.junit4.x; // Assumes that we are testing
import org.jmock.x; // class A's calls on B.

@RunWith(JMock.class)

public class ClassATest {
private Mockery mockery = new JUnit4Mockery(); // initialize jMock

@Test public void testACallsBProperlyl() A{
// create mock object to mock InterfaceB
final InterfaceB mockB = mockery.mock(InterfaceB.class);

// construct object from class under test; attach to mock
A aardvark = new A(...);
aardvark. setResource(mockB)

// declare expectations for how mock should be used
mockery.checking(new Expectations() {{
oneOf(mockB) .method1l("an expected parameter");
will(returnValue(0.0));
oneOf (mockB) .method2();

}});

// execute code A under test; should lead to calls on mockB
aardvark.methodThatUsesB();

// assert that A behaved as expected
mockery.assertIsSatisfied();

Using stubs and mocks together

Using stubs and mocks together

* Suppose a log analyzer reads from a web service. If the
web fails to log an error, the analyzer must send email.

Using stubs and mocks together

* Suppose a log analyzer reads from a web service. If the
web fails to log an error, the analyzer must send email.

* How to test to ensure that this behavior is occurring?

* Set up a stub for the web service that intentionally fails.

e Set up a mock for the email service that checks to see

whether the analyzer contacts it to send an email message.

logError(String)
LogAnalyzer €| StubWWebService
sendEmail()
assert
test 4¢P MockEmailSender

performance testing

Acceptance, performance

* Acceptance testing: System is shown to the user / client /
customer to make sure that it meets their needs.

* A form of black-box system testing.
* Performance is important.

* Performance is a major aspect of program acceptance by users.

* Your intuition about what's slow is often wrong.

Acceptance, performance

* Acceptance testing: System is shown to the user / client /
customer to make sure that it meets their needs.

* A form of black-box system testing.

* Performance is important.

* Performance is a major aspect of program acceptance by users.

* Your intuition about what's slow is often wrong.

Premature optimization is the root of all evil.

Donald Knuth

Thinking about performance

20

Thinking about performance

* The app is only too slow if it doesn't meet your project’s
stated performance requirements.

* [f it meets them, DON'T optimize it!

20

Thinking about performance

* The app is only too slow if it doesn't meet your project’s
stated performance requirements.

* [f it meets them, DON'T optimize it!

* Which is more important, fast code or correct code?

20

Thinking about performance

* The app is only too slow if it doesn't meet your project’s
stated performance requirements.

* [f it meets them, DON'T optimize it!
* Which is more important, fast code or correct code?

* What are reasonable performance requirements!?

* What are the user's expectations! How slow is "acceptable”
for this portion of the application!?

 How long do users wait for a web page to load!?

* Some tasks (admin updates database) can take longer

20

Profile and measure before optimizing

* Runtime / CPU usage

* what lines of code the program is spending
the most time in

« what call/invocation paths were used to get to
these lines

* Memory usage

« what kinds of objects are on the heap B e
* where were they allocated “‘“‘ i, 6 5 7
Rl "”,’.’.@F N,
. ho is pointing to them now Y a2/ a3
w P g LIS UL R

* "memory leaks" (does Java have these?)

* Web page load times, requests/minute, ...

! “]’
»‘,’l‘l“!!//,, 1" .
‘I'B K /f//gr_.
' .'

21

Profile and measure before optimizing

* Runtime / CPU usage
CPU profiling slows down

* what lines of code the program is spending your code (a lot). Design

the most time in :
your profiling tests to be

« what call/invocation paths were used to get to very short.

these lines
* Memory usage

« what kinds of objects are on the heap))

[) “‘;i\' g 56 . ,. 4'"";"/1."’:'/'] "
where were they allocated » i s \EJ 58" o

* who is pointing to them now N2 03 7" g

* "memory leaks" (does Java have these?)

* Web page load times, requests/minute, ...

21

Optimization hints: think high-level

22

Optimization hints: think high-level

* Focus on high-level optimizations (algorithms, data structures)

* Leave the low-level ones to the compiler

22

Optimization hints: think high-level

* Focus on high-level optimizations (algorithms, data structures)

* Leave the low-level ones to the compiler

* Some common high-level optimizations

* Lazy evaluation saves you from computing/loading
* don't read / compute things until you need them
* Hashing, caching save you from reloading resources
* combine multiple database queries into one query

* save |/O / query results in memory for later VWeb page load
times, requests/minute, etc.

* Precomputing values and storing them in a lookup table

* the first 1000 primes

22

sSummary

» System testing checks the behavior of a m
system as a whole.
* Integration testing checks software

quality by testing two or more
dependent software modules as a group.

* Performance testing checks that a
system meets performance
requirements (e.g., responsiveness).

emeagenaraior.net

23

