
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Winter 2016
courses.cs.washington.edu/courses/cse403/16wi/

System Testing

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

2

• Recap: system testing

• Integration testing

• Performance testing

recapsystem testing

System testing

4

• System testing: tests the behavior of a system as a
whole, with respect to scenarios and requirements

• Functional testing, integration testing

• Load, stress, performance testing

• Acceptance, usability, installation, beta testing

System testing

4

• System testing: tests the behavior of a system as a
whole, with respect to scenarios and requirements

• Functional testing, integration testing

• Load, stress, performance testing

• Acceptance, usability, installation, beta testing

testintegration testing

Integration testing

6

Integration testing

6

• Integration testing: checking software quality by
testing two or more dependent software modules
as a group or a (sub)system.

Integration testing

6

• Integration testing: checking software quality by
testing two or more dependent software modules
as a group or a (sub)system.

• Challenges same as in unit testing, plus:

• Combined units can fail in more places and in more 
complicated ways.

• How to test a partial system where not all parts exist?

• How to "rig" the behavior of unit A so as to produce a
given behavior from unit B?

Stubs: a way to test a partial system

7

Stubs: a way to test a partial system

7

• Stub: A controllable replacement for an existing
software unit to which your code under test has a
dependency.

Stubs: a way to test a partial system

7

• Stub: A controllable replacement for an existing
software unit to which your code under test has a
dependency.

• Useful for simulating difficult-to-control elements:

• network / internet

• time/date-sensitive code

• database, files, io, threads, memory

• brittle legacy code /systems

Testing with stubs (1/3)

8

• Identify the external dependency.

• This is either a resource or a class/object.

• If it isn't an object, wrap it up into one.

• (Suppose that Class A depends on Class B.)

Testing with stubs (2/3)

9

• Extract the core functionality of the object into
an interface.

• Create an InterfaceB based on B

• Change all of A's code to work with type
InterfaceB, not B

Testing with stubs (3/3)

10

• Write a second "stub" class that also
implements the interface, but returns pre-
determined fake data.

• Now A's dependency on B is abstracted
away and can be tested easily.

• Can focus on how well A integrates with B's
external behavior.

Where to inject stubs?

11

Where to inject stubs?

11

• Seams: places to inject the stub so Class A will talk to it.

• at construction (not ideal)

 A aardvark = new A(new StubB());

• through a getter/setter method (better)

A apple = new A(...);
 aardvark.setResource(new StubB());

• just before usage, as a parameter (also better)

 aardvark.methodThatUsesB(new StubB());

Where to inject stubs?

11

• Seams: places to inject the stub so Class A will talk to it.

• at construction (not ideal)

 A aardvark = new A(new StubB());

• through a getter/setter method (better)

A apple = new A(...);
 aardvark.setResource(new StubB());

• just before usage, as a parameter (also better)

 aardvark.methodThatUsesB(new StubB());

• You should not have to change A's code everywhere (beyond using
your interface) in order to use your Stub B. (a "testable design")

Mock objects: a way to test interactions

12

• Mock object: A fake object that decides
whether a unit test has passed or failed by
watching interactions between objects.

• Useful for interaction testing, as opposed
to state testing

Stubs vs mocks

13

• A stub (B) gives out data that goes
to the object/class under test (A).

• The unit test directly asserts
against A, to make sure it gives the
right result when fed B’s data.

class under
test (A)

test

stub (B)

assert

communicate

Stubs vs mocks

13

• A stub (B) gives out data that goes
to the object/class under test (A).

• The unit test directly asserts
against A, to make sure it gives the
right result when fed B’s data.

class under
test (A)

test

stub (B)

assert

communicate class under
test (A)

test

mock (B)

assert

communicate

• A mock (B) waits to be called by
the class under test (A).

• It may have several methods it
expects that A should call.

• It makes sure that it was called in
exactly the right way.

• If A interacts with B the way it
should, the test passes.

Mock object frameworks

14

• Stubs are often best created by hand/IDE. Mocks are
tedious to create manually.

• Mock object frameworks help with the process.

• android-mock, EasyMock, jMock (Java)

• ...

• Frameworks provide the following:

• auto-generation of mock objects that implement a given
interface

• logging of what calls are performed on the mock objects

• methods/primitives for declaring and asserting your
expectations

Mock object frameworks

15

• Stubs are often best created by hand/IDE. Mocks are
tedious to create manually.

• Mock object frameworks help with the process.

• android-mock, EasyMock, jMock (Java)

• ...

• Frameworks provide the following:

• auto-generation of mock objects that implement a given
interface

• logging of what calls are performed on the mock objects

• methods/primitives for declaring and asserting your
expectations

A jMock example

16

import org.jmock.integration.junit4.*; // Assumes that we are testing
import org.jmock.*; // class A's calls on B.

@RunWith(JMock.class)
public class ClassATest {
 private Mockery mockery = new JUnit4Mockery(); // initialize jMock

 @Test public void testACallsBProperly1() {
 // create mock object to mock InterfaceB
 final InterfaceB mockB = mockery.mock(InterfaceB.class);

 // construct object from class under test; attach to mock
 A aardvark = new A(...);
 aardvark.setResource(mockB);

 // declare expectations for how mock should be used
 mockery.checking(new Expectations() {{
 oneOf(mockB).method1("an expected parameter");
 will(returnValue(0.0));
 oneOf(mockB).method2();
 }});

 // execute code A under test; should lead to calls on mockB
 aardvark.methodThatUsesB();

 // assert that A behaved as expected
 mockery.assertIsSatisfied();
 }
}

Using stubs and mocks together

17

Using stubs and mocks together

17

• Suppose a log analyzer reads from a web service. If the
web fails to log an error, the analyzer must send email.

Using stubs and mocks together

17

• Suppose a log analyzer reads from a web service. If the
web fails to log an error, the analyzer must send email.

• How to test to ensure that this behavior is occurring?

• Set up a stub for the web service that intentionally fails.

• Set up a mock for the email service that checks to see
whether the analyzer contacts it to send an email message.

LogAnalyzer

test

StubWebService

assert

logError(String)

MockEmailSender

sendEmail()

testperformance testing

Acceptance, performance

19

• Acceptance testing: System is shown to the user / client /
customer to make sure that it meets their needs.

• A form of black-box system testing.

• Performance is important.

• Performance is a major aspect of program acceptance by users.

• Your intuition about what's slow is often wrong.

Acceptance, performance

19

• Acceptance testing: System is shown to the user / client /
customer to make sure that it meets their needs.

• A form of black-box system testing.

• Performance is important.

• Performance is a major aspect of program acceptance by users.

• Your intuition about what's slow is often wrong.

Premature optimization is the root of all evil.

Donald Knuth

Thinking about performance

20

Thinking about performance

20

• The app is only too slow if it doesn't meet your project’s
stated performance requirements.

• If it meets them, DON'T optimize it!

Thinking about performance

20

• The app is only too slow if it doesn't meet your project’s
stated performance requirements.

• If it meets them, DON'T optimize it!

• Which is more important, fast code or correct code?

Thinking about performance

20

• The app is only too slow if it doesn't meet your project’s
stated performance requirements.

• If it meets them, DON'T optimize it!

• Which is more important, fast code or correct code?

• What are reasonable performance requirements?

• What are the user's expectations? How slow is "acceptable"
for this portion of the application?

• How long do users wait for a web page to load?

• Some tasks (admin updates database) can take longer

Profile and measure before optimizing

21

• Runtime / CPU usage

• what lines of code the program is spending
the most time in

• what call/invocation paths were used to get to
these lines

• Memory usage

• what kinds of objects are on the heap

• where were they allocated

• who is pointing to them now

• "memory leaks" (does Java have these?)

• Web page load times, requests/minute, …

Profile and measure before optimizing

21

• Runtime / CPU usage

• what lines of code the program is spending
the most time in

• what call/invocation paths were used to get to
these lines

• Memory usage

• what kinds of objects are on the heap

• where were they allocated

• who is pointing to them now

• "memory leaks" (does Java have these?)

• Web page load times, requests/minute, …

CPU profiling slows down
your code (a lot). Design
your profiling tests to be
very short.

Optimization hints: think high-level

22

Optimization hints: think high-level

22

• Focus on high-level optimizations (algorithms, data structures)

• Leave the low-level ones to the compiler

Optimization hints: think high-level

22

• Focus on high-level optimizations (algorithms, data structures)

• Leave the low-level ones to the compiler

• Some common high-level optimizations

• Lazy evaluation saves you from computing/loading

• don't read / compute things until you need them

• Hashing, caching save you from reloading resources

• combine multiple database queries into one query

• save I/O / query results in memory for later Web page load
times, requests/minute, etc.

• Precomputing values and storing them in a lookup table

• the first 1000 primes

Summary

23

• System testing checks the behavior of a
system as a whole.

• Integration testing checks software
quality by testing two or more
dependent software modules as a group.

• Performance testing checks that a
system meets performance
requirements (e.g., responsiveness).

