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• Recap:  system testing

• Integration testing

• Performance testing
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• System testing:  tests the behavior of a system as a 
whole, with respect to scenarios and requirements 

• Functional testing, integration testing

• Load, stress, performance testing

• Acceptance, usability, installation, beta testing
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• Integration testing:  checking software quality by 
testing two or more dependent software modules 
as a group or a (sub)system.

• Challenges same as in unit testing, plus:

• Combined units can fail in more places and in more 
complicated ways.

• How to test a partial system where not all parts exist?

• How to "rig" the behavior of unit A so as to produce a 
given behavior from unit B?
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• Stub:  A controllable replacement for an existing 
software unit to which your code under test has a 
dependency.

• Useful for simulating difficult-to-control elements:

• network / internet

• time/date-sensitive code

• database, files, io, threads, memory

• brittle legacy code /systems
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• Identify the external dependency.

• This is either a resource or a class/object.

• If it isn't an object, wrap it up into one.

• (Suppose that Class A depends on Class B.)
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• Extract the core functionality of the object into 
an interface.

• Create an InterfaceB based on B

• Change all of A's code to work with type 
InterfaceB, not B
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• Write a second "stub" class that also 
implements the interface, but returns pre-
determined fake data.

• Now A's dependency on B is abstracted 
away and can be tested easily.

• Can focus on how well A integrates with B's 
external behavior.
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• Seams:  places to inject the stub so Class A will talk to it.

• at construction (not ideal)

  A aardvark = new A(new StubB()); 

• through a getter/setter method (better)

A apple = new A(...); 
  aardvark.setResource(new StubB()); 

• just before usage, as a parameter (also better)

  aardvark.methodThatUsesB(new StubB());
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• Seams:  places to inject the stub so Class A will talk to it.

• at construction (not ideal)

  A aardvark = new A(new StubB()); 

• through a getter/setter method (better)

A apple = new A(...); 
  aardvark.setResource(new StubB()); 

• just before usage, as a parameter (also better)

  aardvark.methodThatUsesB(new StubB());

• You should not have to change A's code everywhere (beyond using 
your interface) in order to use your Stub B.   (a "testable design")
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• Mock object:   A fake object that decides 
whether a unit test has passed or failed by 
watching interactions between objects.

• Useful for interaction testing, as opposed 
to state testing



Stubs vs mocks
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• A stub (B) gives out data that goes 
to the object/class under test (A).

• The unit test directly asserts 
against A, to make sure it gives the 
right result when fed B’s data.

class under 
test (A)

test

stub (B)

assert

communicate
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• A mock (B) waits to be called by 
the class under test (A).

• It may have several methods it 
expects that A should call.

• It makes sure that it was called in 
exactly the right way.

• If A interacts with B the way it 
should, the test passes.
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• Stubs are often best created by hand/IDE.  Mocks are 
tedious to create manually.

• Mock object frameworks help with the process.

• android-mock, EasyMock, jMock (Java)

• ...

• Frameworks provide the following:

• auto-generation of mock objects that implement a given 
interface

• logging of what calls are performed on the mock objects

• methods/primitives for declaring and asserting your 
expectations
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import org.jmock.integration.junit4.*;  // Assumes that we are testing 
import org.jmock.*;                     // class A's calls on B. 

@RunWith(JMock.class) 
public class ClassATest { 
    private Mockery mockery = new JUnit4Mockery();  // initialize jMock 
     
    @Test  public void testACallsBProperly1() { 
        // create mock object to mock InterfaceB 
        final InterfaceB mockB = mockery.mock(InterfaceB.class); 

        // construct object from class under test;  attach to mock 
        A aardvark = new A(...); 
        aardvark.setResource(mockB); 
         
        // declare expectations for how mock should be used 
        mockery.checking(new Expectations() {{ 
            oneOf(mockB).method1("an expected parameter"); 
            will(returnValue(0.0)); 
            oneOf(mockB).method2(); 
        }}); 

        // execute code A under test; should lead to calls on mockB 
        aardvark.methodThatUsesB(); 
         
        // assert that A behaved as expected 
        mockery.assertIsSatisfied(); 
    } 
}
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• Suppose a log analyzer reads from a web service. If the 
web fails to log an error, the analyzer must send email.

• How to test to ensure that this behavior is occurring?

• Set up a stub  for the web service that intentionally fails.

• Set up a mock  for the email service that checks to see 
whether the analyzer contacts it to send an email message.

LogAnalyzer

test

StubWebService

assert

logError(String)

MockEmailSender

sendEmail()
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• Acceptance testing:  System is shown to the user / client / 
customer to make sure that it meets their needs.

• A form of black-box system testing.

• Performance is important.

• Performance is a major aspect of program acceptance  by users.

• Your intuition about what's slow is often wrong.
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• Acceptance testing:  System is shown to the user / client / 
customer to make sure that it meets their needs.

• A form of black-box system testing.

• Performance is important.

• Performance is a major aspect of program acceptance  by users.

• Your intuition about what's slow is often wrong.

Premature optimization is the root of all evil.

Donald Knuth
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• The app is only too slow if it doesn't meet your project’s 
stated performance requirements.

• If it meets them, DON'T optimize it!

• Which is more important, fast code or correct code?

• What are reasonable performance requirements?

• What are the user's expectations?  How slow is "acceptable" 
for this portion of the application?

• How long do users wait for a web page to load?

• Some tasks (admin updates database) can take longer



Profile and measure before optimizing
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• Runtime / CPU usage 

• what lines of code the program is spending 
the most time in

• what call/invocation paths were used to get to 
these lines

• Memory usage 

• what kinds of objects are on the heap

• where were they allocated

• who is pointing to them now

• "memory leaks" (does Java have these?)

• Web page load times, requests/minute, …
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• Runtime / CPU usage 

• what lines of code the program is spending 
the most time in

• what call/invocation paths were used to get to 
these lines

• Memory usage 

• what kinds of objects are on the heap

• where were they allocated

• who is pointing to them now

• "memory leaks" (does Java have these?)

• Web page load times, requests/minute, …

CPU profiling slows down 
your code (a lot).  Design 
your profiling tests to be 
very short.
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• Focus on high-level optimizations (algorithms, data structures)

• Leave the low-level ones to the compiler

• Some common high-level optimizations

• Lazy evaluation saves you from computing/loading

• don't read / compute things until you need them

• Hashing, caching save you from reloading resources

• combine multiple database queries into one query

• save I/O / query results in memory for later Web page load 
times, requests/minute, etc.

• Precomputing values and storing them in a lookup table

• the first 1000 primes
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• System testing checks the behavior of a 
system as a whole.

• Integration testing checks software 
quality by testing two or more 
dependent software modules as a group.

• Performance testing checks that a 
system meets performance 
requirements (e.g., responsiveness).


