CSE 403: Software Engineering, Winter 2016

courses.cs.washington.edu/courses/cse403/1 6wi/

Unit Testing

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

* Software quality control
* Effective unit testing

* Coverage and regression testing

basics of software quality control

Errors and faults

Ariane 5: 37 sec after
launch. Cost: $1 billion.

Errors and faults

 Error:incorrect software behavior

* Example: Software controller for the Ariane 5 rocket
crashed (and so did the rocket).

Ariane 5: 37 sec after
launch. Cost: $1 billion.

Errors and faults

 Error:incorrect software behavior

* Example: Software controller for the Ariane 5 rocket
crashed (and so did the rocket). b

 Fault: mechanical or algorithmic cause of error (bug) |

* Example: Conversion from 64-bit floating point to |6-bit

signed integer value caused an exception. o
* Requirements specify desired behavior; if the system {g} - .
deviates from that, it has a fault. N e el

Ariane 5: 37 sec after
launch. Cost: $1 billion.

Software quality control techniques

* Fault avoidance: prevents errors before the
system is released.

* reviews, inspections, walkthroughs, development
methodologies, testing, verification

* Fault tolerance: enables the system to
recover from (some classes of) errors by itself.

* rollbacks, redundancy, mirroring

Showing the presence and absence of bugs ...

testing verification

Showing the presence and absence of bugs ...

Detects the presence of bugs
by running the code on a few
carefully chosen inputs.

\

testing verification

Showing the presence and absence of bugs ...

Detects the presence of bugs
by running the code on a few
carefully chosen inputs.

testing

Shows the absence of bugs on
all possible inputs.

verification

Common kinds of testing

* Unit testing: tests the behavior of an individual
module (method, class, interface)

* Black-box testing
* White-box testing

 System testing: tests the behavior of the system as TESTING IN|
a whole, with respect to scenarios and requirements PROGRESS

* Functional testing, integration testing

* Performance, load, stress testing

* Acceptance, usability, installation, beta testing

effective unit testing

Two rules of unit testing

* Do it early and do it often

« Catch bugs quickly, before they have a chance to hide

* Automate the process if you can

* Be systematic

 If you thrash about arbitrarily, the bugs will hide in
the corner until you're gone

Four basic steps of a test

Four basic steps of a test

|. Choose input data

* without looking at the implementation: black box

* with knowledge of the implementation: white box

Four basic steps of a test

|. Choose input data

* without looking at the implementation: black box

* with knowledge of the implementation: white box

2. Define the expected outcome

Four basic steps of a test

|. Choose input data

* without looking at the implementation: black box

* with knowledge of the implementation: white box

2. Define the expected outcome

3. Run on the input to get the actual outcome

Four basic steps of a test

|. Choose input data

* without looking at the implementation: black box

* with knowledge of the implementation: white box

2. Define the expected outcome
3. Run on the input to get the actual outcome

4. Compare the actual and expected outcomes

Four basic steps of a test

|. Choose input data

* without looking at the implementation: black box

* with knowledge of the implementation: white box

2. Define the expected outcome
3. Run on the input to get the actual outcome

4. Compare the actual and expected outcomes

This is hard! Need a set
of test cases that is small
enough to run quickly, yet
large enough to cover [all]
interesting program
behaviors.

Choosing inputs: two key ideas

el

Choosing inputs: two key ideas

 Partition the input space

* Identify subdomains with the same behavior

* Pick one input from each subdomain

o

Choosing inputs: two key ideas

 Partition the input space

* Identify subdomains with the same behavior

* Pick one input from each subdomain
* Boundary values

* Pick inputs at the edges of the subdomains.

* Effective at finding corner case bugs:

* off-by-one, overflow, aliasing, empty container

Partitioning the input space

// returns the maximum of a, b
public static int max(int a, int b) { .. }

 Partition into
° a<b,a=b’a>b
* Pick an input from each class

* (1,2),(0,0),(2, 1)

Partitioning the input space

// returns the maximum of a, b
public static int max(int a, int b) { .. }

 Partition into
° a<b,a=b’a>b
* Pick an input from each class

* (1,2),(0,0),(2, 1)

How would you partition the
input space for

» Biglnteger multiplication!?

- Set intersection!?

Choosing boundary values

// returns|x|

public static int abs(int a) { ..

e Partition into
* a<0,2>0,a=0 (boundary)
* Other boundary values

* IntegerMAX_ VALUE
* Integer.MIN_VALUE

}

Choosing boundary values

// returns|x|

public static int abs(int a) { ..

e Partition into
* a<0,2>0,a=0 (boundary)
* Other boundary values

* IntegerMAX_ VALUE
* Integer.MIN_VALUE

}

What are good boundary
values for objects!?

Black box testing

* Explores alternate paths through the specification.

e Module under test is a black box: interface visible,
internals hidden.

// If a >= b, returns a. Otherwise returns b.
public static int max(int a, int b) { .. }

* 3 paths, so 3 subdomains
. (1,2) =>2
- 2,1)=>2
. (0,0)=>0

Advantages of black box testing

* Process is not influenced by component being tested

* Assumptions embodied in code not propagated to test data.

* Robust with respect to changes in implementation
* Test data need not be changed when code is changed
 Allows for independent testers

e Testers need not be familiar with code

Disadvantage of black box testing

* |t will miss bugs in the implementation that are not
covered by the specification

* Control-flow details
* Performance optimizations

* Alternate algorithms for different cases

White box testing

* Explores alternate paths through the implementation

e Module under test is a clear box: internals visible.

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x>CACHE_SIZE) {
for (int i=2; i<x/2; i++) {
if (x%i==0) return false;

F
return true;
} else {
return primeTable[x];
F
F

* Important transition at around x = CACHE_SIZE

(Dis)advantages of white box testing

(Dis)advantages of white box testing

» Advantages

* Finds an important class of boundaries.

* Yields useful test cases.

* In isPrime example, need to check numbers on each
side of CACHE_SIZE

« CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+]

(Dis)advantages of white box testing

» Advantages

* Finds an important class of boundaries.

* Yields useful test cases.

* In isPrime example, need to check numbers on each
side of CACHE_SIZE

« CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+]

 Disadvantages

* Tests may have the same bugs as implementation!

Properties of good and bad unit tests

* Tests should be self-contained and not depend
on each other implicitly or explicitly.

* "Smells” (bad things to avoid) in tests:

e Constrained test order

e Test A must run before Test B.
* Tests call each other
e TestA calls Test B.
* Mutable shared state
* Tests A/B both use a shared object.

coverage and regression testing

Measuring test suite quality with coverage

21

Measuring test suite quality with coverage

* Various kinds of coverage

« Statement: is every statement run by some test case!

* Branch: is every direction of an if or while statement
(true or false) taken by some test case!?

* Path: is every path through the program taken by
some test case!

21

Measuring test suite quality with coverage

* Various kinds of coverage

« Statement: is every statement run by some test case!

* Branch: is every direction of an if or while statement
(true or false) taken by some test case!?

* Path: is every path through the program taken by

some test case?

* Limitations of coverage

* Coverage is just a heuristic.
* [00% coverage may not be achievable.

* High-cost to approach the limit.

21

Measuring test suite quality with coverage

* Various kinds of coverage

« Statement: is every statement run by some test case!

* Branch: is every direction of an if or while statement
(true or false) taken by some test case!?

* Path: is every path through the program taken by

some test case?

* Limitations of coverage

* Coverage is just a heuristic.
* [00% coverage may not be achievable.

* High-cost to approach the limit.

We will ask you to provide test-suite coverage
metrics for your Feature-Complete Release.

21

Coverage measuring tools: EclEmma

& Java - CursorableLinkedList.java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Run Window Help

IC5 -5 & &

|G-35-0-Q- | EHFG - [L -5l G-

)
U it 83 [, 2 FRY = O]

Finished after 34,898 seconds

Runs: 13009/13009 E Errors: 0 H Failures: 0

@ Failures | Hierarchy |

B- El junit.framework, TestSuite ﬁ
E] [j. junit. framework, TestSuite

[?. TestBagUtils

E. org.apache.commons.collections. TestClos

~ org.apache.commons.collections. TestColle

~ TestBuffertils

~ TestEnumerationUtils

~ org.apache.commons.collections, TestFact

B[] TestListUtils

E) TestMapUtils

~ org.apache.commons.collections. TestPrec

[E) TestSetitils

~ org.apache.commons.collections. TestTrar

~ TestArrayStack

~ TestBeanMap

~ org.apache.commons.collections. TestBina—

~ TestBoundedFifoBuffer

~ TestBoundedFifoBuffer2

~ TestCursorableLinkedList

~ TestDoubleOrderedMap

~ org.apache.commons.collections, TestExte

~ TestFastArrayList

~ TestFastArrayList1

~ TestFastHashMap

~ TestFastHashMap1

~ TestFastTreeMap

; TestFastTreeMapl v
< I >

= Failure Trace

- |®@ | 4@ B8 %

=0l x|

1l CursorableLinkedList.java X =0

o

if (c.isEmpty()) {

return false’ —
} else if(size == index || size == 0) {

return addill (c):
} else {

Listable succ = getlListableldt (index);

Listable pred (null == succ) ? null : succ.previ():
Iterator it = c.iterator():;
while (it.hasNext()) {
pred = insertlistable (pred,succ,it.nexti());
}
return true;

a4 | of

= public boolean addill{int index, Collection c) { AlEl

'd N\
Problems | Javadoc | Declaration | Console ﬂi Coverage &3 =0

TestallPackages (31.10.2006 15:04:14)

“RMIEIEE: R

Element | Coverage | Covered Linesl Total Lines l -
E] 15 java - commons-collections - 79,5 % 10927 13738
= H} org.apache.commons. collections = 74,1 % 3842 5183
~|J] ArrayStack.java [86,5 % 32 37
¢ [J] BagUtils.java [86,7 % 13 15 —
; @ BeanMap.java] 72,4 % 155 214
; @ BinaryHeap.java = 87,6 % 127 145
¥ [J] BoundedFifoBuffer.java [93,2 % g2 83
; ~|J] BuFferOverflowException.java =] 55,6 % 5 9
¢ [J] BufferUnderflowException.java [88,9 % 8 9
; ~|J) BuFferUtils.java o 30,8 % 4 13
~[J] ClosureUtils. java [93,9 % 31 33
~[J] CollectionUtils.java [92,4 % 293 317
@ ComparatorUtils.java - 8,6 % 3 35
~|J] CursorableLinkedList.java = 85,4 % 444 520 LI

| Writable Smart Insert | 149 28

22

Regression testing

23

Regression testing

* Whenever you find a bug

* Store the input that elicited that bug, plus the correct output
* Add these to the test suite
* Check that the test suite fails

* Fix the bug and verify the fix

23

Regression testing

* Whenever you find a bug

* Store the input that elicited that bug, plus the correct output
* Add these to the test suite
* Check that the test suite fails

* Fix the bug and verify the fix
* Why is this a good idea!?

* Ensures that your fix solves the problem.
* Helps to populate test suite with good tests.

* Protects against reversions that reintroduce bug:

* It happened at least once, and it might happen again

23

sSummary

* Unit testing helps

 convince others that a module works;

* catch problems earlier.

e Choose test data to cover

* specification (black box testing)

* code (white box testing)

* Testing can’t generally prove the absence
of bugs, but it can increase quality and
confidence in the implementation.

24

