
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Winter 2016
courses.cs.washington.edu/courses/cse403/16wi/

Unit Testing

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

2

• Software quality control

• Effective unit testing

• Coverage and regression testing

introbasics of software quality control

Errors and faults

4

Ariane 5: 37 sec after
launch. Cost: $1 billion.

Errors and faults

4

• Error: incorrect software behavior

• Example: Software controller for the Ariane 5 rocket
crashed (and so did the rocket).

Ariane 5: 37 sec after
launch. Cost: $1 billion.

Errors and faults

4

• Error: incorrect software behavior

• Example: Software controller for the Ariane 5 rocket
crashed (and so did the rocket).

• Fault: mechanical or algorithmic cause of error (bug)

• Example: Conversion from 64-bit floating point to 16-bit
signed integer value caused an exception.

• Requirements specify desired behavior; if the system
deviates from that, it has a fault.

Ariane 5: 37 sec after
launch. Cost: $1 billion.

Software quality control techniques

5

• Fault avoidance: prevents errors before the
system is released.

• reviews, inspections, walkthroughs, development
methodologies, testing, verification

• Fault tolerance: enables the system to
recover from (some classes of) errors by itself.

• rollbacks, redundancy, mirroring

Showing the presence and absence of bugs …

6

testing verification

Showing the presence and absence of bugs …

6

testing verification

Detects the presence of bugs
by running the code on a few
carefully chosen inputs.

Showing the presence and absence of bugs …

6

testing verification

Detects the presence of bugs
by running the code on a few
carefully chosen inputs.

Shows the absence of bugs on
all possible inputs.

Common kinds of testing

7

• Unit testing: tests the behavior of an individual
module (method, class, interface)

• Black-box testing

• White-box testing

• System testing: tests the behavior of the system as
a whole, with respect to scenarios and requirements

• Functional testing, integration testing

• Performance, load, stress testing

• Acceptance, usability, installation, beta testing

uniteffective unit testing

Two rules of unit testing

9

• Do it early and do it often

• Catch bugs quickly, before they have a chance to hide

• Automate the process if you can

• Be systematic

• If you thrash about arbitrarily, the bugs will hide in
the corner until you're gone

Four basic steps of a test

10

Four basic steps of a test

10

1. Choose input data

• without looking at the implementation: black box

• with knowledge of the implementation: white box

Four basic steps of a test

10

1. Choose input data

• without looking at the implementation: black box

• with knowledge of the implementation: white box

2. Define the expected outcome

Four basic steps of a test

10

1. Choose input data

• without looking at the implementation: black box

• with knowledge of the implementation: white box

2. Define the expected outcome

3. Run on the input to get the actual outcome

Four basic steps of a test

10

1. Choose input data

• without looking at the implementation: black box

• with knowledge of the implementation: white box

2. Define the expected outcome

3. Run on the input to get the actual outcome

4. Compare the actual and expected outcomes

Four basic steps of a test

10

1. Choose input data

• without looking at the implementation: black box

• with knowledge of the implementation: white box

2. Define the expected outcome

3. Run on the input to get the actual outcome

4. Compare the actual and expected outcomes

This is hard! Need a set
of test cases that is small
enough to run quickly, yet
large enough to cover [all]
interesting program
behaviors.

Choosing inputs: two key ideas

11

Choosing inputs: two key ideas

11

• Partition the input space

• Identify subdomains with the same behavior

• Pick one input from each subdomain

Choosing inputs: two key ideas

11

• Partition the input space

• Identify subdomains with the same behavior

• Pick one input from each subdomain

• Boundary values

• Pick inputs at the edges of the subdomains.

• Effective at finding corner case bugs:

• off-by-one, overflow, aliasing, empty container

Partitioning the input space

12

• Partition into

• a < b, a = b, a > b

• Pick an input from each class

• (1, 2), (0, 0), (2, 1)

// returns the maximum of a, b
public static int max(int a, int b) { … }

Partitioning the input space

12

• Partition into

• a < b, a = b, a > b

• Pick an input from each class

• (1, 2), (0, 0), (2, 1)

// returns the maximum of a, b
public static int max(int a, int b) { … }

How would you partition the
input space for
• BigInteger multiplication?
• Set intersection?

Choosing boundary values

13

• Partition into

• a < 0, a > 0, a = 0 (boundary)

• Other boundary values

• Integer.MAX_VALUE

• Integer.MIN_VALUE

// returns|x|
public static int abs(int a) { … }

Choosing boundary values

13

• Partition into

• a < 0, a > 0, a = 0 (boundary)

• Other boundary values

• Integer.MAX_VALUE

• Integer.MIN_VALUE

// returns|x|
public static int abs(int a) { … }

What are good boundary
values for objects?

Black box testing

14

• Explores alternate paths through the specification.

• Module under test is a black box: interface visible,
internals hidden.

// If a >= b, returns a. Otherwise returns b.
public static int max(int a, int b) { … }

• 3 paths, so 3 subdomains

• (1, 2) => 2

• (2, 1) => 2

• (0, 0) => 0

Advantages of black box testing

15

• Process is not influenced by component being tested

• Assumptions embodied in code not propagated to test data.

• Robust with respect to changes in implementation

• Test data need not be changed when code is changed

• Allows for independent testers

• Testers need not be familiar with code

Disadvantage of black box testing

16

• It will miss bugs in the implementation that are not
covered by the specification

• Control-flow details

• Performance optimizations

• Alternate algorithms for different cases

White box testing

17

• Explores alternate paths through the implementation

• Module under test is a clear box: internals visible.

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x>CACHE_SIZE) {
 for (int i=2; i<x/2; i++) {
 if (x%i==0) return false;

}
 return true;
} else {
 return primeTable[x];
}

}

• Important transition at around x = CACHE_SIZE

(Dis)advantages of white box testing

18

(Dis)advantages of white box testing

18

• Advantages

• Finds an important class of boundaries.

• Yields useful test cases.

• In isPrime example, need to check numbers on each
side of CACHE_SIZE

• CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1

(Dis)advantages of white box testing

18

• Advantages

• Finds an important class of boundaries.

• Yields useful test cases.

• In isPrime example, need to check numbers on each
side of CACHE_SIZE

• CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1

• Disadvantages

• Tests may have the same bugs as implementation!

Properties of good and bad unit tests

19

• Tests should be self-contained and not depend
on each other implicitly or explicitly.

• "Smells" (bad things to avoid) in tests:

• Constrained test order

• Test A must run before Test B.

• Tests call each other

• Test A calls Test B.

• Mutable shared state

• Tests A/B both use a shared object.

covercoverage and regression testing

Measuring test suite quality with coverage

21

Measuring test suite quality with coverage

21

• Various kinds of coverage

• Statement: is every statement run by some test case?

• Branch: is every direction of an if or while statement
(true or false) taken by some test case?

• Path: is every path through the program taken by
some test case?

Measuring test suite quality with coverage

21

• Various kinds of coverage

• Statement: is every statement run by some test case?

• Branch: is every direction of an if or while statement
(true or false) taken by some test case?

• Path: is every path through the program taken by
some test case?

• Limitations of coverage

• Coverage is just a heuristic.

• 100% coverage may not be achievable.

• High-cost to approach the limit.

Measuring test suite quality with coverage

21

• Various kinds of coverage

• Statement: is every statement run by some test case?

• Branch: is every direction of an if or while statement
(true or false) taken by some test case?

• Path: is every path through the program taken by
some test case?

• Limitations of coverage

• Coverage is just a heuristic.

• 100% coverage may not be achievable.

• High-cost to approach the limit.

We will ask you to provide test-suite coverage
metrics for your Feature-Complete Release.

Coverage measuring tools: EclEmma

22

Regression testing

23

Regression testing

23

• Whenever you find a bug

• Store the input that elicited that bug, plus the correct output

• Add these to the test suite

• Check that the test suite fails

• Fix the bug and verify the fix

Regression testing

23

• Whenever you find a bug

• Store the input that elicited that bug, plus the correct output

• Add these to the test suite

• Check that the test suite fails

• Fix the bug and verify the fix

• Why is this a good idea?

• Ensures that your fix solves the problem.

• Helps to populate test suite with good tests.

• Protects against reversions that reintroduce bug:

• It happened at least once, and it might happen again

Summary

24

• Unit testing helps

• convince others that a module works;

• catch problems earlier.

• Choose test data to cover

• specification (black box testing)

• code (white box testing)

• Testing can’t generally prove the absence
of bugs, but it can increase quality and
confidence in the implementation.

