CSE 403: Software Engineering, Winter 2016

courses.cs.washington.edu/courses/cse403/1 6wi/

Refactoring

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

* Problem: code maintenance

* Refactoring: when, why, and how

» Refactoring in the real world

REFACTORING IS KEY

NOBODY KNEW
WHAT'S IN THIS BIG
AND MESSY CLASS.
THEREFORE WE
DECIDED TO
REFACTOR IT

You
RENAMED IT
TO
Areabl?

code maintenance is hard

Problem: bit rot

Problem: bit rot

* After several months and new versions, many codebases
reach one of the following states:

* rewritten: nothing remains from the original code.

* abandoned: the original code is thrown out and rewritten
from scratch.

« ...even if the code was initially reviewed and well-designed,
and even if later checkins are reviewed

Problem: bit rot

* After several months and new versions, many codebases
reach one of the following states:

* rewritten: nothing remains from the original code.

* abandoned: the original code is thrown out and rewritten
from scratch.

« ...even if the code was initially reviewed and well-designed,
and even if later checkins are reviewed

* Why is this?
« Systems evolve to meet new needs and add new features

e |f the code's structure does not also evolve, it will "rot"

Code maintenance ...

keeping
everything
running.

Code maintenance ...

* Code maintenance: modification of a software product

after it has been delivered.
S
, l
@ keeping
i

everything
running.

Code maintenance ...

* Code maintenance: modification of a software product
after it has been delivered.

* Purposes: =

&__ -
* fixing bugs g\ /

* improving performance w |<eeping
* improving design i |

* adding features

Code maintenance ...

* Code maintenance: modification of a software product
after it has been delivered.

* Purposes: -

* fixing bugs % 4

* improving performance @ |<eeping
* improving design ——

* adding features

* ~80% of maintenance is for non-bug-fix-related activities
such as adding functionality (Pigosky 1997)

Code maintenance is hard

Code maintenance is hard

* |t's harder to maintain code than write new code.

* You must understand code written by another

developer, or code you wrote at a different time with
a different mindset

« Danger of errors in fragile, hard-to-understand code

Code maintenance is hard

* |t's harder to maintain code than write new code. -

* You must understand code written by another

developer, or code you wrote at a different time with y
a different mindset

« Danger of errors in fragile, hard-to-understand code

* Maintenance is how developers spend most of
their time

* Many developers hate code maintenance. Why?

Code maintenance is hard

* |t's harder to maintain code than write new code. -

* You must understand code written by another

developer, or code you wrote at a different time with S—
a different mindset

« Danger of errors in fragile, hard-to-understand code

* Maintenance is how developers spend most of
their time

* Many developers hate code maintenance. Why?

* |t pays to design software well and plan ahead so
that later maintenance will be less painful -

« Capacity for future change must be anticipated

refactoring: what, when, why, and how

What is refactoring?

» Refactoring: improving a piece of software's internal

structure without altering its external behavior. R
\EFACTORING
* Incurs a short-term overhead to reap long-term benefits MPROVING THE DESIGN
OF ExiSTING CODE

* A long-term investment in overall system quality.

MARTIN FOWLER

With Camtributions by Kent Beck, John Brant,
William Opdyke, and Don Roberts

» Refactoring is not the same thing as:

Foreword by Erich Gamma
Object Technology International Inc

* rewriting code sl

) BOOCH
* adding features g
IIHBHIGI

* debugging code

Why refactor?

-Zo 0 onﬁl
erachisvagmonolithic ”6’ Tha

onmromuyood ttarpreserves

code Tefao toring

internalexpedientlylanguage
absterxaction% y: .m?;,, otapH

.8
LIRS o e 8 f&nz duplicate

: “’“':% ‘d% @%ﬁ{n °kgetter %

% P Ten ’u!ty "ony,

3 -x:uf‘"‘& ca
% Py il
% Vf lelg &

o L
28k
358 .9
ik & ?

e %

o
&

]

L

Why refactor?

* Why fix a part of your system that isn't broken?

b D epo eth

ltonq 1181
'\59;1 e ”cﬂpuon" bui
’ﬂ‘ ussion L Jo,,?nst%?bnu
sm
ionm o myood tterpl‘eserves

code refa.c orlng

internalexpedientl 1
abstractione

fo S
extreme “%); bﬂz«d o ﬂ”ng duplica.te
U 2 4

qaoddns
U090
88800 &
%o ¢

Asnonut

Why refactor?

* Why fix a part of your system that isn't broken?

* Each part of your system's code has 3 purposes:

by
< D L Opy e etho.
6{’6 o P lyey' 0d P X :ze"‘” 5

descriptyon 2 1t

. . . & disousei T trgpmdic fo}},;
* to execute its functionality, £ St O o,

* to allow change, COde I‘ef aCtOrlng

. . ab]ér; %gi%%exm({t?tg“mmsﬁrg duplicate
* to communicate well to developers who read it. "'°%@;;&Zga\»%fc?’%ﬁfz%?gem)
evegepinapgygi@nsing %
§ Preny Uty iy i
v 52 R 7= 3
41 7(1' % g
238 78
Oop
358 S8
H@°
Q
=

Why refactor?

* Why fix a part of your system that isn't broken?

* Each part of your system's code has 3 purposes: e
Fe£ & veqiintetatonsy,
$?iisc d"“""“ﬁ”"nfuffffy
* to execute its functionality, ,:, R
* to allow change, COde I'ef a.C‘tOI'lng
. . atel ﬁggﬁ%zlxexp?dfnt&“““““sf]xg duplicate
* to communicate well to developers who read it. e’““e’"e%j;f;a% 5
" t'“ﬂebesieu% :
5 :
* If the code does not do these, it is broken. R 5$f
350 0
@ 935“?’

ﬁtgnonu?ﬁf ~

Why refactor?

* Why fix a part of your system that isn't broken?

* Each part of your system's code has 3 purposes:

* to execute its functionality,
* to allow change,

* to communicate well to developers who read it.
* |f the code does not do these, it is broken.

» Refactoring improves software's design

* to make it more extensible, flexible,
understandable, performant, ...

* but every improvement has costs (and risks)

ev AAAAAA
O_Z Ved zm "510 :Iens,z by 2

d&’cnptio Rongy,, -1 ty
e discusslon 2 ns‘ff th’,ﬂ“‘
3) ma 13

l on
easxerdissert&tion codeom preserves

internalexpedientl S
abstraction p?}; mmm {] ang duplicate
extreme ‘4] a2 e %g._:.%
X - “G e '2;,:»"0 tter
. %tzla&desi;;‘“ﬁ & o :%’«
“{Op = é)ility %Omeal '-%
' tem:-
d 0
138 7
358 99
e
e %
Q
o
w
&

When to refactonr?

When to refactonr?

* When is it best for a team to refactor their code!?

* Best done continuously (like testing) as part of the process

* Hard to do well late in a project (like testing)

When to refactonr?

* When is it best for a team to refactor their code!?

* Best done continuously (like testing) as part of the process

* Hard to do well late in a project (like testing)

e Refactor when you identify an area of your system that:

* isn't well designed
* isn't thoroughly tested, but seems to work so far

* now needs new features to be added

Code “smells”: sighs you should refactor

* Duplicated code; dead code

* Poor abstraction

* Large loop, method, class, parameter list
* Module has too little cohesion

* Modules have too much coupling

* Module has poor encapsulation
* A "middle man" object doesn't do much
* A “weak subclass” doesn’t use inherited functionality

* Design is unnecessarily general or too specific

Low-level refactoring

Low-level refactoring

* Names:

* Renaming (methods, variables)

* Naming (extracting) "magic" constants

Low-level refactoring

* Names:

* Renaming (methods, variables)

* Naming (extracting) "magic" constants

* Procedures:

* Extracting code into a method

* Extracting common functionality (including
duplicate code) into a module/method/etc.

* Inlining a method/procedure

* Changing method signatures

Low-level refactoring

* Names:

Renaming (methods, variables)

Naming (extracting) "magic" constants

* Procedures:

Extracting code into a method

Extracting common functionality (including
duplicate code) into a module/method/etc.

Inlining a method/procedure

Changing method signatures

* Reordering:

Splitting one method into several to improve
cohesion and readability (by reducing its size)

Putting statements that semantically belong
together near each other

See also
refactoring.com/

catalog/

http://refactoring.com/catalog/

IDE support for low-level refactoring

* Eclipse /Visual Studio support:

* variable / method / class renaming

* method or constant extraction

* extraction of redundant code snippets
* method signature change

* extraction of an interface from a type
* method inlining

* providing warnings about method
invocations with inconsistent parameters

* help with self-documenting code
through auto-completion

/¢ Compress original output and put it into byte array.
tempOut.write (new Stringi(responseChars)):;

Open Declaration
Open Type Hierarchy
Open Super Implementation

Cut
// Se Copy
Outpu paste
byted
r=| Source >
Local History 4
Search 4

10N

ort millhouse. keytopic.tools.codeparser.KCode

sed —->");

icitly closed.

h header.
ream.size()):

p client.
yetOutputltream() ;

e : "4 hetedtream.gize)]
Rename...
Move...
Change Method Signature. ..
Convert Anonymous Class to Nested...
Convert Nested Type to Top Level. ..

Pull Up...

Push Down...

Extract Interface...

Use Supertype Where Possible. ..

Inline...

Extract Method...
Extract Local Variabl

Extract Constant...

High-level refactoring

High-level refactoring

* Deep implementation and design changes

« Refactoring to design patterns
e Exchanging risky language idioms with safer alternatives
* Performance optimization

« Clarifying a statement that has evolved over time or is
unclear

High-level refactoring

* Deep implementation and design changes

« Refactoring to design patterns

e Exchanging risky language idioms with safer alternatives
* Performance optimization

« Clarifying a statement that has evolved over time or is

unclear

* Compared to low-level refactoring, high-level is:

* Not as well-supported by tools

* Much more important!

How to refactor?

* When you identify an area of your system that:

* is poorly designed
* is poorly tested, but seems to work so far

* now nheeds new features

* What should you do?

born to

refactor

How to refactor? Have a plan!

I'refactoredonce
y | /

£ Y

"ltwas e

Refactoring plan (1/2)

Refactoring plan (1/2)

* Write unit tests that verify the code's external correctness.

* They should pass on the current poorly designed code.

* Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

Refactoring plan (1/2)

* Write unit tests that verify the code's external correctness.

* They should pass on the current poorly designed code.

* Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

* Analyze the code to decide the risk and benefit of refactoring.

 Ifitis too risky, not enough time remains, or the refactor will not
produce enough benefit to the project, don't do it.

I

Code refadoriag —it_wonl be ‘Oﬁcj.

P ——

Refactoring plan (2/2)

Refactoring plan (2/2)

 Refactor the code.

* Some tests may break. Fix the bugs.

Refactoring plan (2/2)

* Refactor the code.
* Some tests may break. Fix the bugs.

* Code review the changes.

Refactoring plan (2/2)

 Refactor the code.

* Some tests may break. Fix the bugs.
* Code review the changes.

* Check in your refactored code.

* Keep each refactoring small; refactor one unit at a time.

* Helps isolate new bugs and regressions.
* Your checkin should contain only your refactor.

* Your checkin should not contain other changes such as
new features, fixes to unrelated bugs, and other tweaks.

refactoring in the real world

Barriers to refactoring: “l don’t have time!”

20

Barriers to refactoring: “l don’t have time!”

* Refactoring incurs an up-front cost.

* Some developers don't want to do it

* Most managers don't like it, because they lose time and
gain “nothing” (no new features).

20

Barriers to refactoring: “l don’t have time!”

* Refactoring incurs an up-front cost.

* Some developers don't want to do it
* Most managers don't like it, because they lose time and
gain “nothing” (no new features).

e However ...

* Clean code is more conducive to rapid development

» Estimates put ROl at >500% for well-done code

* Finishing refactoring increases programmer morale

* Developers prefer working in a “clean house”

20

Barriers to refactoring: company/team culture

21

Barriers to refactoring: company/team culture

* Many small companies and startups skip refactoring.

e “We're too small to need it!”

e “We can't afford it!”

21

Barriers to refactoring: company/team culture

* Many small companies and startups skip refactoring.

“We're too small to need it!”

“We can't afford it!”

* Reality:

Refactoring is an investment in quality of the company's
product and code base, often their prime assets.

Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code.

If a key team member leaves (common in startups) ...

If a new team member joins (also common) ...

21

Refactoring and teamwork: communicate!

22

Refactoring and teamwork: communicate!

* Amount of overhead/communication needed depends on size of refactor.

* Small: just do it, check it in, get it code reviewed.
* Medium: possibly loop in tech lead or another dev.

* Large: meet with team, flush out ideas, do a design doc or design review, get
approval before beginning, and do a phased refactoring.

22

Refactoring and teamwork: communicate!

* Amount of overhead/communication needed depends on size of refactor.

* Small: just do it, check it in, get it code reviewed.

* Medium: possibly loop in tech lead or another dev.

* Large: meet with team, flush out ideas, do a design doc or design review, get
approval before beginning, and do a phased refactoring.

* Avoids possible bad scenarios:

* Two devs refactor same code simultaneously.

* Refactor breaks another dev's new feature they are adding.
* Refactor actually is not a very good design; doesn't help.

* Refactor ignores future use cases, needs of code/app.

* Tons of merge conflicts and pain for other devs.

sSummary

* Refactoring improves internal software
structure without altering its external
behavior.

e Short-term overhead ...

* But many long-term benefits
* Have a refactoring plan.

 Communicate the plan to your team.

REFAGITOR

memec

anarator.net

23

