
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Winter 2016
courses.cs.washington.edu/courses/cse403/16wi/

Design Patterns

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

2

• Overview of design patterns

• Creational patterns

• Structural patterns

• Behavioral patterns

introoverview of design patterns

What is a design pattern?

4

What is a design pattern?

4

• A standard solution to a common programming problem
• a design or implementation structure that achieves a particular purpose

• a high-level programming idiom

What is a design pattern?

4

• A standard solution to a common programming problem
• a design or implementation structure that achieves a particular purpose

• a high-level programming idiom

• A technique for making code more flexible or efficient
• reduce coupling among program components

• reduce memory overhead

What is a design pattern?

4

• A standard solution to a common programming problem
• a design or implementation structure that achieves a particular purpose

• a high-level programming idiom

• A technique for making code more flexible or efficient
• reduce coupling among program components

• reduce memory overhead

• Shorthand for describing program design
• a description of connections among program components

• the shape of a heap snapshot or object model

Why should you care?

5

• You could come up with these solutions on your own …

• But you shouldn't have to!

• A design pattern is a known solution to a known problem.

Types of design patterns

6

• Creational patterns
• how objects are instantiated

• Structural patterns
• how objects / classes can be combined

• Behavioral patterns
• how objects communicate

• Concurrency patterns
• how computations are parallelized / distributed

When (not) to use design patterns

7

When (not) to use design patterns

7

• Rule 1: delay
• Understand the problem & solution first, then improve it

When (not) to use design patterns

7

• Rule 1: delay
• Understand the problem & solution first, then improve it

• Design patterns can increase or decrease understandability of code
• Add indirection, increase code size

• Improve modularity, separate concerns, ease description

When (not) to use design patterns

7

• Rule 1: delay
• Understand the problem & solution first, then improve it

• Design patterns can increase or decrease understandability of code
• Add indirection, increase code size

• Improve modularity, separate concerns, ease description

• If your design or implementation has a problem, consider design
patterns that address that problem

• References:
• Design Patterns: Elements of Reusable Object-Oriented Software, by

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 1995.

• Effective Java: Programming Language Guide, by Joshua Bloch, 2001.

createcreational patterns

Kinds of creational patterns

9

• Factory (method)

• Abstract factory

• Builder

• Prototype

• Flyweight

• Singleton

Creational patterns address
inflexibility of constructors in Java:

1. Can't return a subtype of the
class they belong to

2. Always return a fresh new
object, never re-use one

Factory patterns (problem)

10

interface Matrix { ... }
 class SparseMatrix implements Matrix { ... }
 class DenseMatrix implements Matrix { ... }

• Clients use the supertype (Matrix)
• But still need to use a SparseMatrix or DenseMatrix constructor

• Must decide concrete implementation somewhere

• Don’t want to change code to use a different constructor

Factory method pattern (one solution)

11

class MatrixFactory {
 public static Matrix createMatrix() {
 return new SparseMatrix();
 }
}

• Clients call createMatrix instead of a particular constructor

• Advantages:
• To switch the implementation, change only one place

• createMatrix can do arbitrary computations to decide what kind
of matrix to make

• Frequently used in frameworks (e.g., Java swing)
• BorderFactory.createRaisedBevelBorder()

Abstract factory pattern (another solution)

12

A factory class that can be subclassed (to make new kinds of
factories) and that has an overridable method to create its objects

shapestructural patterns

Kinds of structural patterns

14

• Composite

• Decorator

• Adapter

• Proxy

• …

Structural patterns enable client
code to

1. modify the interface

2. extend behavior

3. restrict access

4. unify access

Composite pattern

15

A client can
manipulate the whole
or any part uniformly.

Composite pattern example: Java GUI

16

Container north = new JPanel(new FlowLayout());
north.add(new JButton("Button 1"));
north.add(new JButton("Button 2"));

Container south = new JPanel(new BorderLayout());
south.add(new JLabel("Southwest"), BorderLayout.WEST);
south.add(new JLabel("Southeast"), BorderLayout.EAST);

Container overall = new JPanel(new BorderLayout());
overall.add(north, BorderLayout.NORTH);
overall.add(new JButton("Center Button”), BorderLayout.CENTER);
overall.add(south, BorderLayout.SOUTH);

frame.add(overall);

Decorator pattern

17

A decorator is a wrapper
object that modifies
behavior of, or adds features
to, another object.

Decorator pattern example: Java IO

18

// InputStreamReader/BufferedReader decorate InputStream
InputStream in = new FileInputStream("hardcode.txt");
InputStreamReader isr = new InputStreamReader(in);
BufferedReader br = new BufferedReader(isr);

// With a BufferedReader decorator, read an
// entire line from the file in one call
// (InputStream only provides public int read())
String wholeLine = br.readLine();

• InputStream class has only public int read() method to read one
letter at a time.

• Decorators such as BufferedReader add functionality to read the
stream more easily.

behavebehavioral patterns

Kinds of behavioral patterns

20

• Null object

• Template method

• Iterator

• Strategy

• …

Behavioral patterns identify and
capture common patterns of
communication between objects.

Null object pattern

21

A client can treat the
absence of an object
transparently.

Null object pattern example: empty list

22

List<Object> search(String value) {
if (“”.equal(value))
return Collections.emptyList(); // null object (empty list)

else
return …;

}

if (search(userInput).isEmpty()) // no NullPointerException
…

else
…

Template method pattern

23

Subclasses can
redefine certain steps
of an algorithm
without changing the
algorithm's structure.

Template method example: games

24

abstract class Game {

 protected int playersCount;
 abstract void initializeGame();
 abstract void makePlay(int player);
 abstract boolean endOfGame();
 abstract void printWinner();

// template method
 public final void playOneGame(int playersCount) {
 this.playersCount = playersCount;
 initializeGame();
 int j = 0;
 while (!endOfGame()) {
 makePlay(j);
 j = (j + 1) % playersCount;
 }
 printWinner();
 }
}

class Monopoly extends Game { … }
class Chess extends Game { … }

Summary

25

• A design pattern is a known solution to a
known problem.

• Creational, structural, behavioral

• If your design or implementation has a
problem, then (and only then) consider
design patterns that address that problem.

