CSE 403: Software Engineering, Winter 2016

courses.cs.washington.edu/courses/cse403/1 6wi/

Designh Patterns

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16wi/

Outline

Overview of design patterns
Creational patterns
Structural patterns

Behavioral patterns

overview of desigh patterns

What is a designh pattern?

'. 3). 1% B 1
Desion Patterns
Elements of Reusable
Object-Oriented Software

Erich Camma
R h.l'c’ m‘*ﬂ
Ralph |ohnson
john Vissides

L]

What is a designh pattern?

* A standard solution to a common programming problem
* a design or implementation structure that achieves a particular purpose

* a high-level programming idiom

v

Desion Patterns B
V) b4 ALLCELD B
Elements of Reusable g
Object-Oriented Software =
trich Camma §
Richard Heln >
Ralph lohnson %
john Vissides 2

-
’

-
%
&
=
-
N

What is a desigh pattern?

* A standard solution to a common programming problem

* a design or implementation structure that achieves a particular purpose

* a high-level programming idiom
* A technique for making code more flexible or efficient

* reduce coupling among program components

* reduce memory overhead

\ '. ')- 3 L \
Desion Patterns
Elements of Reusable
Object-Oriented Software

trich Camma
Richard Helm
Kalph lohnson

hn Vissides

B Nosuay 2

.
>
Z
-
2
-
=
<
=
-
g

What is a desigh pattern?

* A standard solution to a common programming problem
* a design or implementation structure that achieves a particular purpose
* a high-level programming idiom

* A technique for making code more flexible or efficient

* reduce coupling among program components

* reduce memory overhead Desion Patterns
* Shorthand for describing program design Object-Orieaued-Salfiare
trich Camma
* a description of connections among program components Richard L

hn Viessides

* the shape of a heap snapshot or object model

-~
z
€
:
i
2
-
Z
c
:
»

Why should you care?

* You could come up with these solutions on your own ...

 But you shouldn't have to!

* A design pattern is a known solution to a known problem.

\

~

Types of desigh patterns

* Creational patterns

* how objects are instantiated

* Structural patterns

* how objects / classes can be combined

* Behavioral patterns

* how objects communicate

* Concurrency patterns

* how computations are parallelized / distributed

When (nhot) to use designh patterns

When (nhot) to use designh patterns

* Rule |: delay

* Understand the problem & solution first, then improve it

When (nhot) to use designh patterns

* Rule |: delay

* Understand the problem & solution first, then improve it

* Design patterns can increase or decrease understandability of code
* Add indirection, increase code size

* |Improve modularity, separate concerns, ease description

When (hot) to use desigh patterns

* Rule |: delay

* Understand the problem & solution first, then improve it

* Design patterns can increase or decrease understandability of code
* Add indirection, increase code size

* |Improve modularity, separate concerns, ease description

* If your design or implementation has a problem, consider design
patterns that address that problem

e References:

* Design Patterns: Elements of Reusable Object-Oriented Software, by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 1995.

 Effective Java: Programming Language Guide, by Joshua Bloch, 2001.

creational patterns

Kinds of creational patterns

* Factory (method)
* Abstract factory
* Builder

* Prototype

* Flyweight

* Singleton

Creational patterns address
inflexibility of constructors in Java:

|. Can't return a subtype of the
class they belong to

2. Always return a fresh new
object, never re-use one

Factory patterns (problem)

interface Matrix { ... }
class SparseMatrix implements Matrix { ... }
class DenseMatrix implements Matrix { ... }

* Clients use the supertype (Matrix)
* But still need to use a SparseMatrix or DenseMatrix constructor

e Must decide concrete implementation somewhere

* Don’t want to change code to use a different constructor

Factory method pattern (one solution)

class MatrixFactory {
public static Matrix createMatrix() A
return new SparseMatrix();

}

* Clients call createMatrix instead of a particular constructor

* Advantages:
* To switch the implementation, change only one place

e createMatrix can do arbitrary computations to decide what kind
of matrix to make

* Frequently used in frameworks (e.g., Java swing)

* BorderFactory.createRaisedBevelBorder()

Abstract factory pattern (another solution)

A factory class that can be subclassed (to make new kinds of
factories) and that has an overridable method to create its objects

Creator -------:<-ll-§?)-) ------ >

factoryMethod() : Product A
+ anOperation()

ConcreteCreator | ‘_‘9_’??}?_”_____>

+ factoryMethod() : Product

structural patterns

Kinds of structural patterns

* Composite
* Decorator
* Adapter

* Proxy

Structural patterns enable client
code to

|. modify the interface
2. extend behavior
3. restrict access

4. unify access

Composite pattern

A client can
manipulate the whole
or any part uniformly.

Component

0..*

child
+ operation()

Leaf

Composite

+ operation()

operation()

add()
remove()
getChild()

Composite pattern example: Java GUI

Container north = new JPanel(new FlowLayout());
north.add(new JButton("Button 1")):
north.add(new JButton("Button 2")):

Container south = new JPanel(new BorderLayout());
south.add(new JLabel("Southwest"), BorderLayout.WEST);
south.add(new JLabel("Southeast"), BorderLayout.EAST);

Container overall = new JPanel(new BorderLayout());
overall.add(north, BorderLayout.NORTH);

overall.add(new JButton("Center Button”), BorderLayout.CENTER);
overall.add(south, BorderLayout.SOUTH);

frame.add(overall); =% Composite layout

| Button 1 H Button2 |

Center Button

Southwest Southeast

Decorator pattern

A decorator is a wrapper
object that modifies Component

behavior of, or adds features ,
i + operation()
to, another object.

————

ConcreteComponent Decorator

_ - component
+ operation()

+ operation()

ConcreteDecorator

+ operation()

Decorator pattern example: jJava lO

* InputStream class has only public int read() method to read one
letter at a time.

* Decorators such as BufferedReader add functionality to read the
stream more easily.

// InputStreamReader/BufferedReader decorate InputStream
InputStream in = new FileInputStream("hardcode.txt");
InputStreamReader isr = new InputStreamReader(in);
BufferedReader br = new BufferedReader(isr);

// With a BufferedReader decorator, read an

// entire line from the file in one call

// (InputStream only provides public int read())
String wholeLine = br.readLine();

behavioral patterns

Kinds of behavioral patterns

* Null object
* Template method
* [terator

* Strategy

Behavioral patterns identify and
capture common patterns of
communication between objects.

20

Null object pattern

Client

AbstractObject A client can treat the
Uses absence of an object
--------------- > transparently.
+request()
AN
RealObject NullObject
""" do nothing

+request() +request()

21

Null object pattern example: empty list

List<Object> search(String value) {
if (“”.equal(value))
return Collections.emptyList(); // null object (empty list)

else
return ..;
s
if (search(userInput).isEmpty()) // no NullPointerException
elsé"

22

Template method pattern

Subclasses can

FrameworkClass

redefine certain steps
of an algorithm

without changing the
algorithm's structure.

+templateMethod()
+stepOne()
+stepTwo()
+stepThree()

AN

stepOne () ;
stepTwo () ;
stepThree() ;

ApplicationClassOne

+stepTwo()

ApplicationClassTwo

+stepTwo()

23

Template method example: games

abstract class Game {

protected int playersCount;
abstract void initializeGame();
abstract void makePlay(int player);
abstract boolean endOfGame();
abstract void printWinner();

// template method
public final void playOneGame(int playersCount) A
this.playersCount = playersCount;
initializeGame();
int j = 0;
while ('endOfGame()) {
makePlay(j);
j = (j + 1) % playersCount;
s

printWinner();

}

class Monopoly extends Game { .. }
class Chess extends Game { .. }

24

sSummary

* A design pattern is a known solution to a
known problem.

* Creational, structural, behavioral
* If your design or implementation has a

problem, then (and only then) consider
design patterns that address that problem.

25

