

Motivation
 Recursion is an incredibly powerful tool that allows us to rapidly and elegantly develop
solutions to problems that would otherwise require complex and convoluted iterative blocks.
However, recursion holds fundamental disadvantages to such iterative blocks. Most notably
that recursion tends towards higher runtimes. This is due to the overhead of maintaining the
stack which also contributes to software which bears a heavier memory. Furthermore, recursive
functions, in particular in the scope of the Java language, are typically bound by stricter inputs
constraints. For example, there exists a large set of problems that provided with very large data
sets, recursive solutions will result in stack overflow exceptions. Conversely, imperative loop
solutions to those same problems will not result in any sort of overflow exception. Instead, they
will simply perform the computation over a longer time period. That is, there is no inherit limit
to the input size to these problems for an iterative solution.

 We take a moment to acknowledge that a handful of languages implement compile time
or even runtime Tail Recursion Optimization. However, Java, for a multitude of reasons both
based in particular legacy design decisions and perpetuated by a bias towards imperative loops
does not implement such compiler optimizations.

Therefore, there exists a substantial collection of situations in which Java developers
elect to utilize recursion in lieu of imperative loops purely for ease of development. While in
deployment it would be preferable that such recursive solutions were converted to their
imperative counterparts.

Approach
 In order to develop this recursive tool, we propose an Eclipse plugin. We elect a
developer utilized plugin over strategies further down the deployment chain (i.e. as
components of the compiler or JVM interpreter) as this allows greater control. Users of our
plugin will be able to selectively convert recursive functions that they believe to be good
candidates for refactoring. In this manner we keep control in the hands of the developer
instead of forcing our own doctrine. This is particularly crucial for the set of problems to which
a recursive solution in Java is truly superior to that of an iterative. For which it would be
improper to force a refactoring. Likewise, by changing the actual source code we maximize
portability. For example, if a large team is collaborating on a single project individual members
may elect to utilize our tool without requiring universal adoption.

An example usage case of our
plugin can be seen in figures 1 and
2.

Recurme
 Authors: Carl Ross – cross95, Grant Hughes - gyhughes

Figure 1 Pre-Refactor

Edit->Refactor->To Iterative

Figure 2 Post-Refactor

 Behind the scenes our plugin will work to interpret the selected function between
figures 1 and 2. The specifications of this interpretation are yet to be determined. However, we
anticipate a conversion of recursive logic to a decision tree before reverting said decision tree
into iterative code. Utilizing primarily reflective logic (interpretation of the literal text).

Challenges and Risks
 One of the biggest challenges to overcome is properly re-implement the recursive
functions into iterative functions. As we stated earlier, our plugin is supposed to modify the
function to lower the runtime and memory usage. If we do not re-implement the function
correctly, then the code will not work. Even if the code does work, there may be hidden side-
effects that weren’t there before. If we want our plugin to gain any attention, then it has to be
safe, secure, and effective. Users do not want to use software that may or may not work. Users
want to use software that always works and improves their coding experience.

 We have to find a way to produce an improved version of the function that improves
the performance of the code. Our plugin has to properly isolate the recursive task and the base
of the recursive function. Once our plugin refactors the function, it will silently run a quick
sanity check to make sure that the new iterative function is in fact a working, improved version
of the recursive function. If the new function does work, then it replaces the recursive function.
If the new function does not work, it will not replace the function, but will prompt the user to
take the look at the refactored suggestion. This way, the user can approve or modify the
iterative function before replacing the older function. We believe that this feature will limit the
inherent risks of using automated refactoring tools.

