
GUI and Web Programming

CSE 403

(based on a lecture by James Fogarty)

Event-based programming

Sequential Programs

Interacting with the user

• 1. Program takes control

• 2. Program does something

• 3. Program asks for user input

• 4. User provides input

The user as a file

• 1. Program takes control

• 2. Program does something

• 3. Program asks for file input

• 4. File provides input

The user is abstracted as a file

(named STDIN)

Event-driven Programming

• User can provide input at any time

• User actions generate events

mouse click/scroll/move, hover, key press, resize

Event = type + button/position + target

Event Queues

Event Queues

• How many event queues are there in modern

desktop GUI environments?

• How can we tell without knowing the

implementation details?

• What are the implications?

Interactive Software Loop

dispatch_event(e)

Keyboard,

mouse,

touchpad,

accelerometer

dispatch_event(e)

• Handlers (callbacks) are installed to register

interest in some event type

• Dispatch notifies all handlers

• Also known as Publish/Subscribe, Observer

Model-View-Controller (MVC)

• (See CSE 510 slides; p22-31)

GUI Toolkits

• Reduce time necessary to create a UI

• Ready-made UI elements, events

• Windows Forms, GTK, QT, Cocoa, Swing, …

• Web pages! (more on this later)

Typically, in a GUI Toolkit…

• Model backed by database, objects in

memory, files

• View/Controller is merged

• Visual output based on tree of UI elements

and their properties

Simple UI

Less-simple UI

Painting UI elements

• Each UI element (component) is responsible for
drawing itself and its children

• Typically event-based

void OnPaint(GraphicsContext g)

//paint myself

for (child in this.children) {

child.paint(g);

}

}

When to paint?

• The application does not decide!

• UI toolkits keep track of screen damage

• Toolkit will call paint() as necessary to fix
“damage” to the bitmap

• Delegation of this greatly simplifies GUIs

How does damage happen?

• By external (transparent) events

– Mouse cursor, hidden window, overlap

• By dirtying part of the UI component tree

– Component.invalidate() will damage the area

occupied by the component, causing later repaint.

Routing user input/damage

• For mouse input, known as hit testing

– Maps from an active pixel to a UI element

• For keyboard input, focus management

– The element in “focus” receives keyboard events

• Delegation strategies vary per framework

Web (client) Programming

HTML / CSS

• HTML = hypertext markup language

• A language for structuring and marking up

documents in a semantic way

• Similar to LaTeX, PostScript

JavaScript

• Dynamically-typed scripting language

• Prototype-based object system

• Highly flexible and dynamic

• Transmitted only in source form

DOM / CSS

• DOM = document object model

• The abstract syntax tree of HTML

• Large API interacting with document tree

• CSS = cascading style sheets

– Properties for DOM nodes based on pattern matching

HTML + JavaScript + DOM

• A GUI toolkit, with some catches

• DOM serves as model, view, and controller

• Event handlers written in JavaScript

• Visual output derived from DOM node props

– No paint method!

Demo: Web page

• DOM as HTML AST

• Tree structure

• DOM node -> visual output

• CSS matches on DOM nodes

• Assembled from many pieces

• Damage => recompute styles, layout

Demo: Web application

• User input generates events

• Event handlers installed per DOM node

• Incremental repaint of “damaged” area

• Assembled from many pieces dynamically

AJAX?

• Asynchronous JavaScript and XML

• Supports loading JavaScript asynchronously

– As opposed to forcing <script> load

– Event/callback based

JavaScript Libraries?

• jQuery, Prototype, Scriptaculous

• Advantages:

– Remove a lot of boilerplate DOM code

– Alternate, browser-consistent API

• Disadvantages:

– Difficult to debug a large library

– Difficult to reuse code that uses one library

Pros and cons of web applications

• Pros:

– Nothing to install, just need conformant browser

– Easier to configure dynamically

– Effortless “software update”

• Cons:

– HTML/JS/DOM not intended for stateful apps

– Usually requires internet connection

– Less control over user experience

Web (server) Programming

• Can be implemented in any language

– Popular: PHP, Ruby, Java, Python, Perl

• Web application does not care who speaks

– Load balancing, proxies, firewalls

• All communication via HTTP requests

– GET, POST, (PUT, DELETE)

– Static resources and application requests

Web (server) Programming

• Each request is handled in isolation

– But application itself must be highly concurrent,

parallel to serve many users

• Step 1: Decode user request

• Step 2: Do something

• Step 3: Send response to user

Web (server) programming

• Architecture and protocols still fluid

• As always, many frameworks exist to ease

application development

• Deserves its own lecture but..

– Probably best to go read the web!

Bonus: Research

• Research at all points touching the web:

– Debugging

– Domain-specific languages

– Application architecture

– Testing

– Performance

– Security

– HCI

