GUIl and Web Programming

CSE 403

(based on a lecture by James Fogarty)

Event-based programming

The
Event Driven

Sequential Programs

=== BUILD AGGREGATE TARGET ALl OF PROJECT JavaScriptfors WITH CONFIGURATION Debwg ===
- depandent &S
=4 BUILD FAILED **

tBut ldA dovasScriptCor Flavascriphl
bk 1t Webk it I 1l F 1AL ter/. ./in

der ..cop normal xB6_64 Cee com.opple.c

WebkitBui id/ ke,
&P lugtng smakecont 19.5h.

. rpts uef

Makefile

Makefile.

Pagel
ile.om Flanat
burg=loptop Hebe 1t]#

Interacting with the user

* 1. Program takes control
* 2. Program does something

* 3. Program asks for user input

e 4. User provides input

The user as a file

* 1. Program takes control
* 2. Program does something

* 3. Program asks for file input

* 4. File provides input

The user is abstracted as a file
(named STDIN)

Event-driven Programming

e User can provide input at any time

e User actions generate events
mouse click/scroll/move, hover, key press, resize
Event = type + button/position + target

Event Queues

All events go to an event queue
provided by operating system
Ensures events are handled in the order they occur

hides specifics of input from apps

Event Queue

Event Queues

* How many event queues are there in modern
desktop GUI environments?

* How can we tell without knowing the
implementation details?

 What are the implications?

Interactive Software Loop

do {
e = read_event(); } input
dispatch_event(e);
if (damage_exists()) } e

update_display();
} while (e.type '= WM_QUIT);

Nearly all GUI software has this somewhere

dispatch event(e)

Keyboard,
mouse,
touchpad,
accelerometer

Li Li

[|
handler 1 | handler 2 |'"

Handlers pattern

. handler n \

chant
eliant
avanig
i garver
dispatcher
nandler handler2 (**®

chient

“gvent gueus”
containing
sendce requesis

handem

dispatch event(e)

 Handlers (callbacks) are installed to register
interest in some event type

* Dispatch notifies all handlers

* Also known as Publish/Subscribe, Observer

Model-View-Controller (MVC)

* (See CSE 510 slides; p22-31)

GUI Toolkits

Reduce time necessary to create a Ul

Ready-made Ul elements, events

Windows Forms, GTK, QT, Cocoa, Swing, ...

Web pages! (more on this later)

Typically, in a GUI Toolkit...

* Model backed by database, objects in
memory, files

* View/Controller is merged

* Visual output based on tree of Ul elements
and their properties

Simple Ul

™ Automatically check for updates when you have a network connection

Weekly 1%

Wext scheduled: 2011-05-02 18:54:39 -0700
Desired releases: | Only General Releases 14

Last Check: No new software updates were available
2011-04-25 18:54:38 0700

[Check Now) (_Restore Defauits) (7)

Less-simple Ul

] .
' & [{iACellhc149:5 ¢ W class j5Cell 5 —
147} A Base impiementabieni for mon-obiect cla
140 | virtusl nesl getDwaPropertySlotiEsecSiates
.'-‘.1! | wirtuasl hasl Ftﬂ-ﬁ."'.‘ﬁﬁ.‘E?EEﬁﬁﬂE'.::'.E.it:#
G
151
157 M| =1t and_eq
willl |
“‘i I'er_l. AnonyseusslotCount
i 15t | Y
18 |
| g wny
158 BE APICallbachShim
;::I *”‘il:l APICazt_h
" 141 I p.._.r-. APLERmtT ry!-hl.l
-I |l APIEmtryShimkithoutiock
16% ¢ |
188 {0 APISHImE_h
1I.1.: appaEni
165§
187 Apple
]ul B APPLE_ADS DID
I"-n = kil
e e] 1

Painting Ul elements

* Each Ul element (component) is responsible for
drawing itself and its children

e Typically event-based

vold OnPaint (GraphicsContext qg)
//paint myself
for (child in this.children) {
child.paint (g);

When to paint?

The application does not decide!
Ul toolkits keep track of screen damage

Toolkit will call paint() as necessary to fix
“damage” to the bitmap

Delegation of this greatly simplifies GUIs

How does damage happen?

* By external (transparent) events

— Mouse cursor, hidden window, overlap

* By dirtying part of the Ul component tree

— Component.invalidate() will damage the area
occupied by the component, causing later repaint.

Routing user input/damage

* For mouse input, known as hit testing

— Maps from an active pixel to a Ul element

* For keyboard input, focus management

— The element in “focus” receives keyboard events

* Delegation strategies vary per framework

Web (client) Programming

-
—

\

Ta Ie:;;} more dbw‘rm:: ang| =
o ems, T svqqest you)- '
| vt oy wdbsite?)

oy

Q™

e

HTML / CSS

e HTML = hypertext markup language

* Alanguage for structuring and marking up
documents in a semantic way

* Similar to LaTeX, PostScript

JavaScript

Dynamically-typed scripting language
Prototype-based object system
Highly flexible and dynamic

Transmitted only in source form

DOM / CSS

DOM = document object model
The abstract syntax tree of HTML
Large APl interacting with document tree

CSS = cascading style sheets
— Properties for DOM nodes based on pattern matching

HTML + JavaScript + DOM

A GUI toolkit, with some catches
DOM serves as model, view, and controller
Event handlers written in JavaScript

Visual output derived from DOM node props
— No paint method!

Demo: Web page

DOM as HTML AST

Tree structure

DOM node -> visual output

CSS matches on DOM nodes
Assembled from many pieces
Damage => recompute styles, layout

Demo: Web application

User input generates events

Event handlers installed per DOM node
Incremental repaint of “damaged” area
Assembled from many pieces dynamically

AJAX?

e Asynchronous JavaScript and XML

e Supports loading JavaScript asynchronously

— As opposed to forcing <script> load
— Event/callback based

JavaScript Libraries?

* jQuery, Prototype, Scriptaculous
* Advantages:

— Remove a lot of boilerplate DOM code
— Alternate, browser-consistent API

* Disadvantages:
— Difficult to debug a large library
— Difficult to reuse code that uses one library

Pros and cons of web applications

* Pros:
— Nothing to install, just need conformant browser
— Easier to configure dynamically
— Effortless “software update”

* Cons:
— HTML/JS/DOM not intended for stateful apps

— Usually requires internet connection

— Less control over user experience

Web (server) Programming

* Can be implemented in any language
— Popular: PHP, Ruby, Java, Python, Perl

* Web application does not care who speaks
— Load balancing, proxies, firewalls

* All communication via HTTP requests
— GET, POST, (PUT, DELETE)
— Static resources and application requests

Web (server) Programming

Each request is handled in isolation

— But application itself must be highly concurrent,
parallel to serve many users

Step 1: Decode user request
Step 2: Do something
Step 3: Send response to user

Web (server) programming

e Architecture and protocols still fluid

* As always, many frameworks exist to ease
application development

 Deserves its own lecture but..
— Probably best to go read the web!

Bonus: Research

e Research at all points touching the web:
— Debugging
— Domain-specific languages
— Application architecture
— Testing
— Performance

— Security
— HCI

