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Why architecture?




The basic problem:
From requirements to code

w How do you bridge the gap
22997 between requirements
M and code?



One answer:
Solve with inspiration

w

a miracle happens

M



A better answer:
Solve with engineering

Provides a high-level
framework to

build and evolve the
system




What does an architecture look like?



Box-and-arrow diagrams
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But, what does a box represent?

an arrow?

a layer?
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Legend:

Cornponent

=== Connector

Comrmuni cation
Link

§

<Nﬂtiﬁcmions

Requests




Box and arrow diagrams redux

Third-Party
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etc.
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An architecture:
components and connectors

Components define the basic computations
comprising the system and their behaviors

— abstract data types, filters, etc.
Connectors define the interconnections between
components

— procedure call, event announcement,
asynchronous message sends, etc.

The line between them may be fuzzy at times

— Ex: A connector might (de)serialize data, but can it
perform other, richer computations?



UML diagrams

UML = universal modeling language

A standardized way to describe (draw)
architecture

— Also implementation details such as subclassing,
uses (dependences), and much more

Widely used in industry
Topic of next lecture



What is a good architecture?

Satisfies functional and performance
requirements

Manages complexity
Accommodates future change

Is concerned with

— reliability, safety, understandability, compatibility,
robustness, ...



Divide and conquer

* Benefits of decomposition:
— Decrease size of tasks
— Support independent testing and analysis
— Separate work assignments
— Ease understanding

* Use of abstraction leads to modularity

— Implementation techniques: information hiding,
interfaces

* To achieve modularity, you need:
— Strong cohesion within a component
— Loose coupling between components
— And these properties should be true at each level



An architecture helps with

System understanding: interactions between
modules

Reuse: high-level view shows opportunity for reuse

Construction: breaks development down into work
items; provides a path from requirements to code

Evolution: high-level view shows evolution path

Management: helps understand work items and
track progress

Communication: provides vocabulary; a picture
says 1000 words



Qualities of modular software

decomposable
— can be broken down into pieces

composable
— pieces are useful and can be combined

understandable
— one piece can be examined in isolation

has continuity
— change in reqgs affects few modules

protected / safe
— an error affects few other modules




Interface and implementation

* public interface: data and behavior of the object that
can be seen and executed externally by "client" code

e private implementation: internal data and methods in
the object, used to help implement the public
interface, but cannot be directly accessed

* client: code that uses your class/subsystem

Example: radio
— public interface is the speaker, volume buttons, station dial

— private implementation is the guts of the radio; the
transistors, capacitors, voltage readings, frequencies, etc.
that user should not see




Properties of architecture

Coupling
Cohesion
Style conformity
Matching

Errosion



Coupling (loose vs. tight)

» Coupling: the kind and quantity of
iInterconnections among modules

* Modules that are loosely coupled (or uncoupled)
are better than those that are tightly coupled

* The more tightly coupled two modules are, the
harder it is to work with them separately



Tightly or loosely coupled?
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Tightly or loosely coupled?

User Interface| === |Graphics

-End5
* -End3
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Cohesion (strong vs. weak)

Cohesion: how closely the operations in a
module are related

Tight relationships improve clarity and
understanding

Classes with good abstraction usually have
strong cohension

No schizophrenic classes!



Strong or weak cohesion?

class Employee {

public:

I.:.l.JIIName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;

Béol IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);

.éqIQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;



Style conformity: What is a style?

* An architectural style defines
— The vocabulary of components and connectors for a
family (style)
— Constraints on the elements and their combination

* Topological constraints (no cycles, register/announce
relationships, etc.)

e Execution constraints (timing, etc.)
* By choosing a style, one gets all the known
properties of that style (for any architecture in
that style)

— For example: performance, lack of deadlock, ease of
making particular classes of changes, etc.



Styles are not just boxes and arrows

* Consider pipes & filters, for example (Garlan and Shaw)
— Pipes must compute local transformations
— Filters must not share state with other filters
— There must be no cycles
* If these constraints are violated, it’s not a pipe & filter system
— One can’t tell this from a picture
— One can formalize these constraints

scan —) parse —) optimize ) generate




Interface mismatch

e Mars orbiter loss

NASA lost a 125 million Mars orbiter because one
engineering team used metric units while another
used English units for a key spacecraft operation




The design and the reality

* The code is often less clean than the design

 The design is still useful
— communication among team members

— selected deviations can be explained more concisely and
with clearer reasoning



Architectural mismatch

Garlan, Allen, Ockerbloom tried to build a toolset to support software
architecture definition from existing components

— OODB (0BST)

— graphical user interface toolkit (Interviews)

— RPC mechanism (MIG/Mach RPC)

— Event-based tool integration mechanism (Softbench)

It went to hell in a handbasket, not because the pieces didn’t work, but
because they didn’t fit together

— Excessive code size

— Poor performance

— Needed to modify out-of-the-box components (e.g., memory allocation)

— Error-prone construction process

Architectural Mismatch: Why Reuse Is So Hard. /EEE Software 12, 6 (Nov.
1995)

Architecture should warn about such problems (& identify problems)



Views

A view illuminates a set of top-level design decisions
* how the system is composed of interacting parts
 where are the main pathways of interaction

« key properties of the parts

* information to allow high-level analysis and
appraisal



different dimensions of systems
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Client-server architecture
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Web application (client-server)

Web Browser

Booch



Model-View-Controller

Separates:
sees uses

» the application object
R

« thewayitis
represented to the user
manipulates (view)

@ « the way in which the

user controls it
Application (controller).

updates




Pipe and filter

Pipe — passes the data

Q:% top | grep $USER | grep acrobat :>©

/

Filter - computes on the data

Each stage of the pipeline acts independently of

the others.
Can you think of a system based on this

architecture?



Shared nothing architecture

High Speed Interconnect

node 1 node 2 node N




Blackboard architectures

The knowledge sources: separate,
independent units of application
dependent knowledge. No direct
interaction among knowledge sources

The blackboard data structure: problem-
solving state data. Knowledge sources
make changes to the blackboard that lead
incrementally to a solution to the
problem.

Control: driven entirely by state of
blackboard. Knowledge sources respond
opportunistically to changes in the
blackboard.

Simple Blackboard

Blackboard

@‘n::ll' Architectures

{ Data flow)

Knowledge
Source

Knowledge
Source

Knowledge
Source

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern

recognition.
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Hearsay-Il: blackboard

Hearsay-II Instance of Blackboard

36



Summary

* An architecture provides a high-level
framework to build and evolve a
software system.

* Strive for modularity: strong cohesion
and loose coupling.

* Consider using existing
architectural styles
or patterns.




